Question #142661
Find the radius of convergence for the series:
∑_(k=1)^∞▒〖-5x〗^k/(k+2)
1
Expert's answer
2020-11-08T18:01:04-0500

Use ratio test as,


LL=limxak+1ak=\lim\nolimits_x\rarr\infin∣ \frac{a_{k+1}}{a_{k}}∣


=limx(5x)k+1(k+1)+2k+2(5x)k=\lim\nolimits_x\rarr\infin∣ \frac{(-5x)^{k+1}}{(k+1)+2}\frac{k+2}{(-5x)^{k}}∣


=limx(5x)k+1(5x)kk+2k+3=\lim\nolimits_x\rarr\infin∣ \frac{(-5x)^{k+1}}{(-5x)^{k}}\frac{k+2}{k+3}∣


=limx(5x)k(1+2k)k(1+3k)=\lim\nolimits_x\rarr\infin∣ (-5x)\frac{k(1+\frac{2}{k})}{k(1+\frac{3}{k})}∣


=(5x)(1+0)(1+0)=∣ (-5x)\frac{(1+0)}{(1+0)}∣


=(5x)=∣ (-5x)∣


=5x=∣ 5x∣



For convergence 5x<1∣ 5x∣<1 , so


1<5x<1-1<5x<1


15<x<15-\frac{1}{5}<x<\frac{1}{5}


The radius of convergence of the series is,


R=12[15(15)]R=\frac{1}{2}[\frac{1}{5}-(-\frac{1}{5})]


=12[15+15]=\frac{1}{2}[\frac{1}{5}+\frac{1}{5}]


=12[25]=\frac{1}{2}[\frac{2}{5}]


=15=\frac{1}{5}


Therefore, the radius of convergence is R=15R=\frac{1}{5}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS