Use ratio test as,
"L""=\\lim\\nolimits_x\\rarr\\infin\u2223 \\frac{a_{k+1}}{a_{k}}\u2223"
"=\\lim\\nolimits_x\\rarr\\infin\u2223 \\frac{(-5x)^{k+1}}{(k+1)+2}\\frac{k+2}{(-5x)^{k}}\u2223"
"=\\lim\\nolimits_x\\rarr\\infin\u2223 \\frac{(-5x)^{k+1}}{(-5x)^{k}}\\frac{k+2}{k+3}\u2223"
"=\\lim\\nolimits_x\\rarr\\infin\u2223 (-5x)\\frac{k(1+\\frac{2}{k})}{k(1+\\frac{3}{k})}\u2223"
"=\u2223 (-5x)\\frac{(1+0)}{(1+0)}\u2223"
"=\u2223 (-5x)\u2223"
"=\u2223 5x\u2223"
For convergence "\u2223 5x\u2223<1" , so
"-1<5x<1"
"-\\frac{1}{5}<x<\\frac{1}{5}"
The radius of convergence of the series is,
"R=\\frac{1}{2}[\\frac{1}{5}-(-\\frac{1}{5})]"
"=\\frac{1}{2}[\\frac{1}{5}+\\frac{1}{5}]"
"=\\frac{1}{2}[\\frac{2}{5}]"
"=\\frac{1}{5}"
Comments
Leave a comment