lim(x,y)→(4,5)x+y−3x+y−9=lim(x,y)→(4,5)x+y−3(x+y−3)(x+y+3)=\lim_{(x,y)\to(4,5)}\frac{\sqrt{x+y}-3}{x+y-9}=\lim_{(x,y)\to(4,5)}\frac{\sqrt{x+y}-3}{(\sqrt{x+y}-3)(\sqrt{x+y}+3)}=lim(x,y)→(4,5)x+y−9x+y−3=lim(x,y)→(4,5)(x+y−3)(x+y+3)x+y−3=
=lim(x,y)→(4,5)1x+y+3=14+5+3=13+3=16.=\lim_{(x,y)\to(4,5)}\frac{1}{\sqrt{x+y}+3}=\frac{1}{\sqrt{4+5}+3}=\frac{1}{3+3}=\frac{1}{6}.=lim(x,y)→(4,5)x+y+31=4+5+31=3+31=61.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments