The region of integration is a cone in spherical coordinates where radius changes from 0 to 1,
azimuthal angle ϕ\phiϕ changes from 0 to 2π2\pi2π and polar angle θ\thetaθ changes from 0 toπ4\frac{\pi}{4}4π .
V=∭VdV=∫02π∫0π4∫01r2sinθdrdθdϕ=V=\iiint_{V}{dV}=\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{4}}\int_{0}^{1}r^2\sin{\theta} dr d\theta d\phi=V=∭VdV=∫02π∫04π∫01r2sinθdrdθdϕ=
=∫01r2dr∫0π4sinθdθ∫02πdϕ=\int_{0}^{1}r^2dr \int_{0}^{\frac{\pi}{4}} \sin\theta d\theta \int_{0}^{2\pi}d\phi=∫01r2dr∫04πsinθdθ∫02πdϕ =
=r33∣01∗(−cosθ)∣0π4∗ϕ∣02π==\frac{r^3}{3}|_{0}^{1}* (-\cos{\theta})|_{0}^{\frac{\pi}{4}}*\phi|_{0}^{2\pi}==3r3∣01∗(−cosθ)∣04π∗ϕ∣02π=
=13(−22−(−1))∗2π==\frac{1}{3}(-\frac{\sqrt{2}}{2}-(-1))*2\pi==31(−22−(−1))∗2π=
=π3(2−2)=\frac{\pi}{3}(2-\sqrt{2})=3π(2−2)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments