The region of integration is a cone in spherical coordinates where radius changes from 0 to 1,
azimuthal angle "\\phi" changes from 0 to "2\\pi" and polar angle "\\theta" changes from 0 to"\\frac{\\pi}{4}" .
"V=\\iiint_{V}{dV}=\\int_{0}^{2\\pi}\\int_{0}^{\\frac{\\pi}{4}}\\int_{0}^{1}r^2\\sin{\\theta} dr d\\theta d\\phi="
"=\\int_{0}^{1}r^2dr \\int_{0}^{\\frac{\\pi}{4}} \\sin\\theta d\\theta \\int_{0}^{2\\pi}d\\phi" =
"=\\frac{r^3}{3}|_{0}^{1}* (-\\cos{\\theta})|_{0}^{\\frac{\\pi}{4}}*\\phi|_{0}^{2\\pi}="
"=\\frac{1}{3}(-\\frac{\\sqrt{2}}{2}-(-1))*2\\pi="
"=\\frac{\\pi}{3}(2-\\sqrt{2})"
Comments
Leave a comment