The region of integration is a cone in spherical coordinates where radius changes from 0 to 1,
azimuthal angle ϕ \phi ϕ changes from 0 to 2 π 2\pi 2 π and polar angle θ \theta θ changes from 0 toπ 4 \frac{\pi}{4} 4 π .
V = ∭ V d V = ∫ 0 2 π ∫ 0 π 4 ∫ 0 1 r 2 sin θ d r d θ d ϕ = V=\iiint_{V}{dV}=\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{4}}\int_{0}^{1}r^2\sin{\theta} dr d\theta d\phi= V = ∭ V d V = ∫ 0 2 π ∫ 0 4 π ∫ 0 1 r 2 sin θ d r d θ d ϕ =
= ∫ 0 1 r 2 d r ∫ 0 π 4 sin θ d θ ∫ 0 2 π d ϕ =\int_{0}^{1}r^2dr \int_{0}^{\frac{\pi}{4}} \sin\theta d\theta \int_{0}^{2\pi}d\phi = ∫ 0 1 r 2 d r ∫ 0 4 π sin θ d θ ∫ 0 2 π d ϕ =
= r 3 3 ∣ 0 1 ∗ ( − cos θ ) ∣ 0 π 4 ∗ ϕ ∣ 0 2 π = =\frac{r^3}{3}|_{0}^{1}* (-\cos{\theta})|_{0}^{\frac{\pi}{4}}*\phi|_{0}^{2\pi}= = 3 r 3 ∣ 0 1 ∗ ( − cos θ ) ∣ 0 4 π ∗ ϕ ∣ 0 2 π =
= 1 3 ( − 2 2 − ( − 1 ) ) ∗ 2 π = =\frac{1}{3}(-\frac{\sqrt{2}}{2}-(-1))*2\pi= = 3 1 ( − 2 2 − ( − 1 )) ∗ 2 π =
= π 3 ( 2 − 2 ) =\frac{\pi}{3}(2-\sqrt{2}) = 3 π ( 2 − 2 )
Comments