∫01∫01−x2∫x2+y22−x2−y2xydzdydxdzdydx=ρ2sinθdφdθdρx=ρcosφsinθ,y=ρsinφsinθ,z=ρcosθx2+y2=zx2+y2+z2=2z2ρ2=2ρ2cosθcosθ=21,θ=4π2−x2−y2=z2−x2−y2=z22=x2+y2+z2ρ2=2,ρ=21−x2=y1=x2+y2x2+y2=ρ2sin2θ(cos2φ+sin2φ)=ρ2sin2θ1=ρ2sin2θsin2θ=21,θ=4πx=0,ρcosφcosθ=0,φ=2πρsinφcosθ=12sinφsin(4π)=1φ=2π∫01∫01−x2∫x2+y22−x2−y2xydzdydx=∫02π∫04π∫02(ρ2cosφsinφsin2θ⋅ρ2sinθ)dρdθdφ=∫02ρ4dρ∫02π2sin(2φ)dφ∫04πsin3θdθ=−5ρ5∣∣02⋅4cos(2φ)∣∣02π⋅4−3cosθ+3cos(3θ)∣∣04π=−5ρ5∣∣02⋅4cos(2φ)∣∣02π⋅12−9cosθ+cos(3θ)∣∣04π=542⋅41⋅(−832−242+129−121)=52⋅(32−832−242)=51⋅(322−65)=1522−61
Comments