"\\displaystyle\\int_0^1 \\int_0^{\\sqrt{1 - x^2}}\\int_{\\sqrt{x^2 + y^2}}^{\\sqrt{2 - x^2 - y^2}} \\,xy \\mathrm{d}z\\mathrm{d}y\\mathrm{d}x\\\\\n\n\\, \\mathrm{d}z\\, \\mathrm{d}y\\, \\mathrm{d}x = \\rho^2\\sin{\\theta}\\mathrm{d}\\varphi\\, \\mathrm{d}\\theta\\, \\mathrm{d}\\rho\\\\\n\nx = \\rho\\cos{\\varphi}\\sin{\\theta}, y = \\rho\\sin{\\varphi}\\sin{\\theta}, z = \\rho\\cos{\\theta}\\\\\n\n\\sqrt{x^2 + y^2} = z\\\\\n\nx^2 + y^2 + z^2 = 2z^2\\\\\n\n\\rho^2 = 2\\rho^2\\cos{\\theta}\\\\\n\n\\cos{\\theta} = \\frac{1}{\\sqrt{2}}, \\theta = \\frac{\\pi}{4}\\\\\n\n\\sqrt{2 - x^2 - y^2} = z\\\\\n\n2 - x^2 - y^2 = z^2\\\\\n\n2 = x^2 + y^2 + z^2\\\\\n\n\n\\rho^2 = 2, \\rho = \\sqrt{2}\\\\\n\n\\sqrt{1 - x^2}= y\\\\\n\n1 = x^2 + y^2\\\\\n\nx^2 + y^2 = \\rho^2\\sin^2{\\theta}(\\cos^2{\\varphi} + \\sin^2{\\varphi}) = \\rho^2\\sin^2{\\theta}\\\\\n\n1 = \\rho^2\\sin^2\\theta\\\\\n\n\\sin^2\\theta = \\frac{1}{2}, \\theta = \\frac{\\pi}{4}\\\\\n\n\nx = 0, \\rho\\cos\\varphi\\cos\\theta = 0, \\varphi = \\frac{\\pi}{2}\\\\\n\n\\rho\\sin\\varphi\\cos\\theta = 1\\\\\n\n\\sqrt{2}\\sin\\varphi\\sin\\left(\\frac{\\pi}{4}\\right) = 1\\\\\n\n\\varphi = \\frac{\\pi}{2}\\\\\n\n\n\n\\begin{aligned}\n\\int_0^1 \\int_0^{\\sqrt{1 - x^2}}\\int_{\\sqrt{x^2 + y^2}}^{\\sqrt{2 - x^2 - y^2}}xy \\,\\mathrm{d}z\\mathrm{d}y\\mathrm{d}x &= \\int_0^{\\frac{\\pi}{2}} \\int_0^{\\frac{\\pi}{4}}\\int_0^{\\sqrt{2}} (\\rho^2\\cos\\varphi\\sin\\varphi\\sin^2\\theta\\cdot\\rho^2\\sin\\theta)\\, \\mathrm{d}\\rho\\,\\mathrm{d}\\theta\\,\\mathrm{d}\\varphi\n\\\\&=\\int_0^{\\sqrt{2}} \\rho^4\\, \\mathrm{d}\\rho \\int_0^{\\frac{\\pi}{2}} \\frac{\\sin(2\\varphi)}{2}\\,\\mathrm{d}\\varphi \\int_0^{\\frac{\\pi}{4}}\\sin^3{\\theta}\\, \\mathrm{d}\\theta\n\\\\&=-\\frac{\\rho^5}{5}\\biggr\\vert_0^{\\sqrt{2}} \\cdot\\frac{\\cos(2\\varphi)}{4}\\biggr\\vert_0^{\\frac{\\pi}{2}} \\cdot\\frac{-3\\cos{\\theta} + \\frac{\\cos(3\\theta)}{3}}{4}\\biggr\\vert_0^{\\frac{\\pi}{4}}\n\\\\&=-\\frac{\\rho^5}{5}\\biggr\\vert_0^{\\sqrt{2}} \\cdot\\frac{\\cos(2\\varphi)}{4}\\biggr\\vert_0^{\\frac{\\pi}{2}} \\cdot\\frac{-9\\cos{\\theta} + \\cos(3\\theta)}{12}\\biggr\\vert_0^{\\frac{\\pi}{4}}\n\\\\&=\\frac{4\\sqrt{2}}{5} \\cdot\\frac{1}{4} \\cdot\\left(-\\frac{3\\sqrt{2}}{8} - \\frac{\\sqrt{2}}{24} + \\frac{9}{12} - \\frac{1}{12}\\right)\n\\\\&=\\frac{\\sqrt{2}}{5}\\cdot\\left(\\frac{2}{3}-\\frac{3\\sqrt{2}}{8} - \\frac{\\sqrt{2}}{24}\\right)\n\\\\&=\\frac{1}{5}\\cdot\\left(\\frac{2\\sqrt{2}}{3} - \\frac{5}{6}\\right)\n\\\\&=\\frac{2\\sqrt{2}}{15} - \\frac{1}{6}\n\\end{aligned}"
Comments
Leave a comment