Lets convert to spherical coordinates:
x=ρsin(ϕ)cos(θ)
y=ρsin(ϕ)sin(θ)
z=x=ρcos(ϕ)
ρ2=x2+y2+z2=4
Since the region is enclosed by the sphere within the 1st octant let set the limits:
θ∈[0,2π] , ϕ∈[0,2π] , ρ∈[0,2]
Therefore
I=∫02π∫02π∫02eρρ2sin(ϕ)dρdϕdθ=[∫02πdθ][∫02πsin(ϕ)dϕ][∫02eρρ2dρ]
Applying integration by parts:
∫02eρρ2dρ=(ρ2eρ−∫eρ2ρdρ)∣02=(ρ2eρ−2(ρeρ−eρ))∣02=2e2−2
I=2π⋅(−cos(ϕ)∣02π)⋅(2e2−2)=πe2−π
Answer: πe2−π
Comments
Leave a comment