Answer to Question #143562 in Calculus for Promise Omiponle

Question #143562
Evaluate ∫∫∫D e^(sqrt(x^2+y^2+z^2)) dV, where D is the region enclosed by x^2+y^2+z^2= 4 within the first octant. Recall that the first octant is the region for which x >0; y >0; z >0.
1
Expert's answer
2020-11-15T18:02:12-0500

Lets convert to spherical coordinates:

x=ρsin(ϕ)cos(θ)x=\rho sin(\phi) cos(\theta)

y=ρsin(ϕ)sin(θ)y=\rho sin(\phi) sin(\theta)

z=x=ρcos(ϕ)z=x=\rho cos(\phi)

ρ2=x2+y2+z2=4\rho^2 = x^2+y^2+z^2=4

Since the region is enclosed by the sphere within the 1st octant let set the limits:

θ[0,π2]\theta\in [\, 0, \frac{\pi}{2}]\, , ϕ[0,π2]\phi\in [\, 0, \frac{\pi}{2}]\, , ρ[0,2]\rho\in [\, 0, 2]\,

Therefore

I=0π20π202eρρ2sin(ϕ)dρdϕdθ=[0π2dθ][0π2sin(ϕ)dϕ][02eρρ2dρ]I=\int_0^\frac{\pi}{2}\int_0^\frac{\pi}{2}\int_0^2e^\rho\rho^2sin(\phi)d\rho d\phi d\theta=[\,\int_0^\frac{\pi}{2}d\theta]\,[\,\int_0^\frac{\pi}{2}sin(\phi)d\phi]\,[\,\int_0^2e^\rho \rho^2d\rho]\,


Applying integration by parts:

02eρρ2dρ=(ρ2eρeρ2ρdρ)02=(ρ2eρ2(ρeρeρ))02=2e22\int_0^2e^\rho \rho^2d\rho=(\rho^2e^\rho-\int e^\rho2\rho d\rho)\vert_0^2=(\rho^2e^\rho-2(\rho e^\rho-e^\rho))\vert_0^2=2e^2-2


I=π2(cos(ϕ)0π2)(2e22)=πe2πI=\frac{\pi}{2}\cdot(-cos({\phi})\vert_0^\frac{\pi}{2})\cdot(2e^2-2)=\pi e^2-\pi


Answer: πe2π\pi e^2-\pi


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment