∭EzdV,\iiint_E zdV,∭EzdV,
E={y2+z2=256,y=4x,x=0,z=0,x>0,y>0,z>0}E=\{y^2+z^2 = 256, y=4x,x=0,z=0, x>0,y>0,z>0\}E={y2+z2=256,y=4x,x=0,z=0,x>0,y>0,z>0}
z∈[0;256−y2]x∈[0;y4]y∈[0;16]z \in[0;\sqrt{256-y^2}]\\ x\in[0;\frac{y}{4}]\\ y\in[0;16]z∈[0;256−y2]x∈[0;4y]y∈[0;16]
∫016dy∫0y4dx∫0256−y2zdz==∫016dy∫0y4dx(z22∣0256−y2)==∫016dx∫0y4(256−y22)dx=∫016(128−y22)y4dy==∫016(32y−y38)dy=16y2−y432∣016=4096−2048==2048\int_0^{16}dy\int_0^{\frac{y}{4}}dx\int_0^{\sqrt{256-y^2}}zdz = \\ =\int_0^{16}dy\int_0^{\frac{y}{4}}dx(\frac{z^2}{2}|_0^{\sqrt{256-y^2}}) = \\= \int_0^{16}dx\int_0^{\frac{y}{4}}(\frac{256-y^2}{2})dx = \int_0^{16}(128-\frac{y^2}{2})\frac{y}{4}dy=\\= \int_0^{16}(32y-\frac{y^3}{8})dy = 16y^2 - \frac{y^4}{32}|_0^{16} = 4096-2048=\\= 2048∫016dy∫04ydx∫0256−y2zdz==∫016dy∫04ydx(2z2∣0256−y2)==∫016dx∫04y(2256−y2)dx=∫016(128−2y2)4ydy==∫016(32y−8y3)dy=16y2−32y4∣016=4096−2048==2048
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments