Question #143568
Evaluate the triple integral ∭E z dV where E is the solid bounded by the cylinder y^2+z^2=576 and the planes x=0,y=4x and z=0 in the first octant.
1
Expert's answer
2020-11-17T05:33:49-0500

EzdV,\iiint_E zdV,

E={y2+z2=256,y=4x,x=0,z=0,x>0,y>0,z>0}E=\{y^2+z^2 = 256, y=4x,x=0,z=0, x>0,y>0,z>0\}

z[0;256y2]x[0;y4]y[0;16]z \in[0;\sqrt{256-y^2}]\\ x\in[0;\frac{y}{4}]\\ y\in[0;16]

016dy0y4dx0256y2zdz==016dy0y4dx(z220256y2)==016dx0y4(256y22)dx=016(128y22)y4dy==016(32yy38)dy=16y2y432016=40962048==2048\int_0^{16}dy\int_0^{\frac{y}{4}}dx\int_0^{\sqrt{256-y^2}}zdz = \\ =\int_0^{16}dy\int_0^{\frac{y}{4}}dx(\frac{z^2}{2}|_0^{\sqrt{256-y^2}}) = \\= \int_0^{16}dx\int_0^{\frac{y}{4}}(\frac{256-y^2}{2})dx = \int_0^{16}(128-\frac{y^2}{2})\frac{y}{4}dy=\\= \int_0^{16}(32y-\frac{y^3}{8})dy = 16y^2 - \frac{y^4}{32}|_0^{16} = 4096-2048=\\= 2048


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS