Answer to Question #143598 in Calculus for sachini

Question #143598
if a function f is not defined at x=a that the limit
1
Expert's answer
2020-11-11T12:19:39-0500

The concept of limits has to do with the behaviour of the function close to x = a and not at x = a.

limxaf(x)\lim\limits_{x\to a}f(x) may exist even if function f is undefined at x=ax=a  


f(x)=x,x0f(x)=x, x\not=0

limx0f(x)=0,\lim\limits_{x\to 0}f(x)=0, ff is undefined at x=0.x=0.



limxaf(x)\lim\limits_{x\to a}f(x) may be equal infinity even if function f is undefined at x=ax=a  


f(x)=1x,f(x)=\dfrac{1}{|x|},

limx0f(x)=,\lim\limits_{x\to 0}f(x)=\infin, ff is undefined at x=0.x=0.


limxaf(x)\lim\limits_{x\to a}f(x) may not exist if function ff is undefined at x=ax=a  


f(x)=1x,f(x)=\dfrac{1}{x},

limx0f(x)=,limx0+f(x)=,\lim\limits_{x\to 0^-}f(x)=-\infin, \lim\limits_{x\to 0^+}f(x)=\infin,

limx0f(x)=does not exist \lim\limits_{x\to 0}f(x)=\text{does not exist }


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment