f(x,y,z)=xy2+yz2+xyz,M(2,−1,1)
∂x∂f=y2+yz,
∂y∂f=2xy+z2+xz,
∂z∂f=2yz+xy
∂x∂f(M)=(−1)2+(−1)(1)=0,
∂y∂f(M)=2(2)(−1)+(1)2+2(1)=−1,
∂z∂f(M)=2(−1)(1)+2(−1)=−4
Given u=2i+4j−k
∣u∣=(2)2+(4)2+(−1)2=21
l=212i+214j−211k
∂l∂f=0⋅212+(−1)⋅214+(−4)⋅(−211)=0 The directional derivative
∂l∂f=0
Comments