Question #144508
Find the directional derivative of \\(Ï•=xy^2+yz^2+xyz\\) at the point (2, -1, 1) in the direction of the vector \\(A=2i+4j-k\\).
1
Expert's answer
2020-11-17T16:18:45-0500

f(x,y,z)=xy2+yz2+xyz,M(2,1,1)f(x, y, z)=xy^2 +yz^2+xyz, M(2, -1, 1)


fx=y2+yz,\dfrac{\partial f}{\partial x}=y^2+yz,


fy=2xy+z2+xz,\dfrac{\partial f}{\partial y}=2xy+z^2+xz,

fz=2yz+xy\dfrac{\partial f}{\partial z}=2yz+xy

f(M)x=(1)2+(1)(1)=0,\dfrac{\partial f(M)}{\partial x}=(-1)^2+(-1)(1)=0,

f(M)y=2(2)(1)+(1)2+2(1)=1,\dfrac{\partial f(M)}{\partial y}=2(2)(-1)+(1)^2+2(1)=-1,

f(M)z=2(1)(1)+2(1)=4\dfrac{\partial f(M)}{\partial z}=2(-1)(1)+2(-1)=-4

Given u=2i+4jk\vec{u}=2\vec{i}+4\vec{j}-\vec{k}

u=(2)2+(4)2+(1)2=21|\vec{u}|=\sqrt{(2)^2+(4)^2+(-1)^2}=\sqrt{21}

l=221i+421j121k\vec{l}=\dfrac{2}{\sqrt{21}}\vec{i}+\dfrac{4}{\sqrt{21}}\vec{j}-\dfrac{1}{\sqrt{21}}\vec{k}

fl=0221+(1)421+(4)(121)=0\dfrac{\partial f}{\partial l}=0\cdot\dfrac{2}{\sqrt{21}}+(-1)\cdot\dfrac{4}{\sqrt{21}}+(-4)\cdot(-\dfrac{1}{\sqrt{21}})=0

The directional derivative 


fl=0\dfrac{\partial f}{\partial l}=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS