f ( x , y , z ) = x y 2 + y z 2 + x y z , M ( 2 , − 1 , 1 ) f(x, y, z)=xy^2 +yz^2+xyz, M(2, -1, 1) f ( x , y , z ) = x y 2 + y z 2 + x yz , M ( 2 , − 1 , 1 )
∂ f ∂ x = y 2 + y z , \dfrac{\partial f}{\partial x}=y^2+yz, ∂ x ∂ f = y 2 + yz ,
∂ f ∂ y = 2 x y + z 2 + x z , \dfrac{\partial f}{\partial y}=2xy+z^2+xz, ∂ y ∂ f = 2 x y + z 2 + x z ,
∂ f ∂ z = 2 y z + x y \dfrac{\partial f}{\partial z}=2yz+xy ∂ z ∂ f = 2 yz + x y
∂ f ( M ) ∂ x = ( − 1 ) 2 + ( − 1 ) ( 1 ) = 0 , \dfrac{\partial f(M)}{\partial x}=(-1)^2+(-1)(1)=0, ∂ x ∂ f ( M ) = ( − 1 ) 2 + ( − 1 ) ( 1 ) = 0 ,
∂ f ( M ) ∂ y = 2 ( 2 ) ( − 1 ) + ( 1 ) 2 + 2 ( 1 ) = − 1 , \dfrac{\partial f(M)}{\partial y}=2(2)(-1)+(1)^2+2(1)=-1, ∂ y ∂ f ( M ) = 2 ( 2 ) ( − 1 ) + ( 1 ) 2 + 2 ( 1 ) = − 1 ,
∂ f ( M ) ∂ z = 2 ( − 1 ) ( 1 ) + 2 ( − 1 ) = − 4 \dfrac{\partial f(M)}{\partial z}=2(-1)(1)+2(-1)=-4 ∂ z ∂ f ( M ) = 2 ( − 1 ) ( 1 ) + 2 ( − 1 ) = − 4
Given u ⃗ = 2 i ⃗ + 4 j ⃗ − k ⃗ \vec{u}=2\vec{i}+4\vec{j}-\vec{k} u = 2 i + 4 j − k
∣ u ⃗ ∣ = ( 2 ) 2 + ( 4 ) 2 + ( − 1 ) 2 = 21 |\vec{u}|=\sqrt{(2)^2+(4)^2+(-1)^2}=\sqrt{21} ∣ u ∣ = ( 2 ) 2 + ( 4 ) 2 + ( − 1 ) 2 = 21
l ⃗ = 2 21 i ⃗ + 4 21 j ⃗ − 1 21 k ⃗ \vec{l}=\dfrac{2}{\sqrt{21}}\vec{i}+\dfrac{4}{\sqrt{21}}\vec{j}-\dfrac{1}{\sqrt{21}}\vec{k} l = 21 2 i + 21 4 j − 21 1 k
∂ f ∂ l = 0 ⋅ 2 21 + ( − 1 ) ⋅ 4 21 + ( − 4 ) ⋅ ( − 1 21 ) = 0 \dfrac{\partial f}{\partial l}=0\cdot\dfrac{2}{\sqrt{21}}+(-1)\cdot\dfrac{4}{\sqrt{21}}+(-4)\cdot(-\dfrac{1}{\sqrt{21}})=0 ∂ l ∂ f = 0 ⋅ 21 2 + ( − 1 ) ⋅ 21 4 + ( − 4 ) ⋅ ( − 21 1 ) = 0 The directional derivative
∂ f ∂ l = 0 \dfrac{\partial f}{\partial l}=0 ∂ l ∂ f = 0
Comments