"f(x, y, z)=xy^2 +yz^2+xyz, M(2, -1, 1)"
"\\dfrac{\\partial f}{\\partial z}=2yz+xy"
"\\dfrac{\\partial f(M)}{\\partial x}=(-1)^2+(-1)(1)=0,"
"\\dfrac{\\partial f(M)}{\\partial y}=2(2)(-1)+(1)^2+2(1)=-1,"
"\\dfrac{\\partial f(M)}{\\partial z}=2(-1)(1)+2(-1)=-4"
Given "\\vec{u}=2\\vec{i}+4\\vec{j}-\\vec{k}"
"|\\vec{u}|=\\sqrt{(2)^2+(4)^2+(-1)^2}=\\sqrt{21}""\\vec{l}=\\dfrac{2}{\\sqrt{21}}\\vec{i}+\\dfrac{4}{\\sqrt{21}}\\vec{j}-\\dfrac{1}{\\sqrt{21}}\\vec{k}"
"\\dfrac{\\partial f}{\\partial l}=0\\cdot\\dfrac{2}{\\sqrt{21}}+(-1)\\cdot\\dfrac{4}{\\sqrt{21}}+(-4)\\cdot(-\\dfrac{1}{\\sqrt{21}})=0"
The directional derivative
Comments
Leave a comment