You have given a function λ : R → R with the following properties (x ∈ R, n ∈ N):
λ(n) = 0 , λ(x + 1) = λ(x) , λ (n +1/2)=1
Find two functions p, q : R → R with q(x) not equal to 0 for all x such that λ(x) = q(x)(p(x) + 1).
Then for "n\\in \\N"
"=>p(n)+1=0=>p(n)=-1"
Let "q(x)=1,x\\in \\R."
Let "p(x)=|\\sin(\\pi x)|-1"
Then
"\\lambda(x)=|\\sin(\\pi x)|"
Check
"=|\\sin(\\pi x)|=\\lambda(x), x\\in\\R"
"\\lambda(n+\\dfrac{1}{2})=|\\sin(\\pi(n+\\dfrac{1}{2} ))|=\\sin(\\dfrac{\\pi}{2})=1, n\\in\\N"
"\\lambda(x)=q(x)(p(x)+1)=1\\cdot(|\\sin(\\pi x)|-1+1)"
Comments
Leave a comment