Answer to Question #144510 in Calculus for Hussaina
. Determine the \\(curl F\\) at the point (2, 0, 3) given that \\(F=xz i+(2x^2-y)j-yz^2 k\\).
1
2020-11-17T17:04:47-0500
"\\text{curl}\\vec{F}=\\nabla\\times\\vec{F}=\\begin{vmatrix}\n \\vec{i} & \\vec{j} & \\vec{k} \\\\\n \\dfrac{\\partial}{\\partial x} & \\dfrac{\\partial}{\\partial y} & \\dfrac{\\partial}{\\partial z} \\\\\nxz & 2x^2-y & -yz^2\n\\end{vmatrix}="
"=\\vec{i}(-z^2-0)-\\vec{j}(0-x)+\\vec{k}(4x-0)="
"=-z^2\\vec{i}+x\\vec{j}+4x\\vec{k}" "M(2,0,3)"
"\\text{curl}\\vec{F}_M=-9\\vec{i}+2\\vec{j}+8\\vec{k}"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment