Answer to Question #144510 in Calculus for Hussaina

Question #144510
. Determine the \\(curl F\\) at the point (2, 0, 3) given that \\(F=xz i+(2x^2-y)j-yz^2 k\\).
1
Expert's answer
2020-11-17T17:04:47-0500
"\\text{curl}\\vec{F}=\\nabla\\times\\vec{F}=\\begin{vmatrix}\n \\vec{i} & \\vec{j} & \\vec{k} \\\\\n \\dfrac{\\partial}{\\partial x} & \\dfrac{\\partial}{\\partial y} & \\dfrac{\\partial}{\\partial z} \\\\\nxz & 2x^2-y & -yz^2\n\\end{vmatrix}="


"=\\vec{i}(-z^2-0)-\\vec{j}(0-x)+\\vec{k}(4x-0)="

"=-z^2\\vec{i}+x\\vec{j}+4x\\vec{k}"

"M(2,0,3)"


"\\text{curl}\\vec{F}_M=-9\\vec{i}+2\\vec{j}+8\\vec{k}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS