2020-11-14T16:52:39-05:00
. Determine the \\(curl F\\) at the point (2, 0, 3) given that \\(F=xz i+(2x^2-y)j-yz^2 k\\).
1
2020-11-17T17:04:47-0500
curl F ⃗ = ∇ × F ⃗ = ∣ i ⃗ j ⃗ k ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z x z 2 x 2 − y − y z 2 ∣ = \text{curl}\vec{F}=\nabla\times\vec{F}=\begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
\dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z} \\
xz & 2x^2-y & -yz^2
\end{vmatrix}= curl F = ∇ × F = ∣ ∣ i ∂ x ∂ x z j ∂ y ∂ 2 x 2 − y k ∂ z ∂ − y z 2 ∣ ∣ =
= i ⃗ ( − z 2 − 0 ) − j ⃗ ( 0 − x ) + k ⃗ ( 4 x − 0 ) = =\vec{i}(-z^2-0)-\vec{j}(0-x)+\vec{k}(4x-0)= = i ( − z 2 − 0 ) − j ( 0 − x ) + k ( 4 x − 0 ) =
= − z 2 i ⃗ + x j ⃗ + 4 x k ⃗ =-z^2\vec{i}+x\vec{j}+4x\vec{k} = − z 2 i + x j + 4 x k M ( 2 , 0 , 3 ) M(2,0,3) M ( 2 , 0 , 3 )
curl F ⃗ M = − 9 i ⃗ + 2 j ⃗ + 8 k ⃗ \text{curl}\vec{F}_M=-9\vec{i}+2\vec{j}+8\vec{k} curl F M = − 9 i + 2 j + 8 k
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments