Question #145156
Exercise 25: Let f : [a, b] → R be continuous and ϕ : [a, b] → R be integrable and
non-negative, i.e. ϕ ≥ 0. Then there exists c ∈ (a, b) such that
the integral of f(x)ϕ(x)dx from a to b = f(c) the integral of ϕ(x)dx from a to b.
1
Expert's answer
2020-11-19T12:53:43-0500

Let m=minx[a,b]f(x)m=\min\limits_{x\in[a,b]}f(x) and M=maxx[a,b]f(x)M=\max\limits_{x\in[a,b]}f(x).

Then φ(x)(f(x)m)0\varphi(x)(f(x)-m)\ge 0 on [a,b][a,b] , so abφ(x)(f(x)m)dx0\int\limits_a^b \varphi(x)(f(x)-m)dx\ge 0, that is mabφ(x)dxabφ(x)f(x)dxm\int\limits_a^b\varphi(x)dx\le\int\limits_a^b \varphi(x)f(x)dx.

Similarly we can obtain abφ(x)f(x)dxMabφ(x)dx\int\limits_a^b \varphi(x)f(x)dx\le M\int\limits_a^b \varphi(x)dx

So we have 2 cases:

1)If abφ(x)dx=0\int\limits_a^b \varphi(x)dx=0, then abφ(x)f(x)dx=0=f(c)abφ(x)dx\int\limits_a^b \varphi(x)f(x)dx=0=f(c)\int\limits_a^b \varphi(x)dx for every c(a,b)c\in(a,b)

2)If abφ(x)dx0\int\limits_a^b \varphi(x)dx\neq 0, then mabφ(x)f(x)dxabφ(x)dxMm\le\frac{\int\limits_a^b \varphi(x)f(x)dx}{\int\limits_a^b \varphi(x)dx}\le M. Then by the intermediate value theorem there is c[a,b]c\in[a,b] such that abφ(x)f(x)dxabφ(x)dx=f(c)\frac{\int\limits_a^b \varphi(x)f(x)dx}{\int\limits_a^b \varphi(x)dx}=f(c), that is abφ(x)f(x)dx=f(c)abφ(x)dx\int\limits_a^b \varphi(x)f(x)dx=f(c)\int\limits_a^b \varphi(x)dx.

Prove that if c{a,b}c\in\{a,b\}, then there is c(a,b)c'\in(a,b) such that abφ(x)f(x)dx=f(c)abφ(x)dx\int\limits_a^b \varphi(x)f(x)dx=f(c')\int\limits_a^b \varphi(x)dx. We need to consider 2 subcases:

2.1)c=ac=a. Then we have abφ(x)(f(x)f(a))dx=0\int\limits_a^b \varphi(x)(f(x)-f(a))dx=0.

If there is c(a,b)c'\in(a,b) such that f(a)=f(c)f(a)=f(c'), then abφ(x)f(x)dx=f(c)abφ(x)dx\int\limits_a^b \varphi(x)f(x)dx=f(c')\int\limits_a^b \varphi(x)dx

Suppose that there is not x(a,b)x\in(a,b) such that f(x)=f(a)f(x)=f(a), then by the intermediate value theorem f(x)f(a)f(x)-f(a) does not change the sign on (a,b)(a,b). Without loss of generality we can assume that f(x)>f(a)f(x)>f(a) for every x(a,b)x\in(a,b).

So we have that φ(x)(f(x)f(a))0\varphi(x)(f(x)-f(a))\ge 0 on (a,b)(a,b). Then since abφ(x)(f(x)f(a))dx=0\int\limits_a^b \varphi(x)(f(x)-f(a))dx=0, we have φ(x)(f(x)f(a))=0\varphi(x)(f(x)-f(a))=0 almost everywhere on (a,b)(a,b). Since f(x)f(a)>0f(x)-f(a)>0 on (a,b)(a,b), we have that φ(x)=0\varphi(x)=0 almost everywhere on (a,b)(a,b), that is abφ(x)dx=0\int\limits_a^b \varphi(x)dx=0.

By the point 1) we obtain that abφ(x)f(x)dx=f(c)abφ(x)dx\int\limits_a^b \varphi(x)f(x)dx=f(c')\int\limits_a^b \varphi(x)dx for every c(a,b)c'\in(a,b)

So we obtain that there is c(a,b)c'\in(a,b) such that abφ(x)f(x)dx=f(c)abφ(x)dx\int\limits_a^b \varphi(x)f(x)dx=f(c')\int\limits_a^b \varphi(x)dx

2.2)c=bc=b. This case is similar to 2.1.

So for the case 2 we obtain that abφ(x)f(x)dx=f(c)abφ(x)dx\int\limits_a^b \varphi(x)f(x)dx=f(c')\int\limits_a^b \varphi(x)dx for some c(a,b)c'\in(a,b).

Therefore in every case we obtain that abφ(x)f(x)dx=f(c)abφ(x)dx\int\limits_a^b \varphi(x)f(x)dx=f(c)\int\limits_a^b \varphi(x)dx for some c(a,b)c\in(a,b)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS