1. Change the order of the integration in the following double integral:
∫_(√3)^1dx ∫_(-√(4-x^2 ))^0ydy
2. Evaluate the following integral:
∫(3x-5)/√(9+6x-3x^2 ) dx
1
Expert's answer
2020-11-23T18:32:47-0500
1)∫31dx∫−4−x20dy=−∫13dx∫−4−x20dy1≤x≤3−4−x2≤y≤0y=−4−x2x2+y2=4x=4−y2theuppersemicirclewiththecenteratthepointO(0;0)andtheradius2.When changing the order of integration, our region must be divided into two subregions:D=D1+D2D1:1≤x≤3,−1≤y≤0D2:1≤x≤4−y2,−3≤y≤−1∫31dx∫−4−x20dy=∫−3−1dy∫14−y2dx+∫−10dy∫13dxanswer:∫−3−1dy∫14−y2dx+∫−10dy∫13dx2)∫9+6x−3x23x−5dx==∫9+6x−3x23x−3dx−∫9+6x−3x22dx==−∫29+6x−3x21d(9+6x−3x2)−+32∗∫4−(1−x)21d(1−x)=32sin−1(21−2x)−9+6x−3x2+C)answer:32sin−1(21−2x)−9+6x−3x2+C
Comments