"1) \\ \\int_{\\sqrt3}^1 \\ dx \\int_{-\\sqrt{4-x^2}}^0 \\ dy = \\\\\n-\\int_1^{\\sqrt3} \\ dx \\int_{-\\sqrt{4-x^2}}^0 \\ dy\\\\\n1 \\le x \\le \\sqrt3\\\\\n-\\sqrt{4-x^2} \\le y \\le 0\\\\\ny = -\\sqrt{4-x^2}\\\\\nx^2+y^2 = 4 \\\\\nx = \\sqrt{4-y^2}\\\\\nthe\\ upper\\ semicircle\\ with\\ the\\ center\\ at\\\\ \nthe\\ point\\ O (0; 0)\\ and\\ the\\ radius\\ 2.\\\\\n\\text{When changing the order of integration,}\\\\\n\\text{ our region must be divided into two subregions:}\\\\\nD = D_1+D_2\\\\\nD_1: 1 \\le x \\le \\sqrt3, \\ -1 \\le y \\le 0 \\\\\nD_2: 1 \\le x \\le \\sqrt{4-y^2}, \\ -\\sqrt3 \\le y \\le -1 \\\\\n\\int_{\\sqrt3}^1 \\ dx \\int_{-\\sqrt{4-x^2}}^0 \\ dy = \\\\\n\\int_{-\\sqrt3}^{-1} \\ dy \\int_1^{\\sqrt{4-y^2}} \\ dx + \\int_{-1}^{0} \\ dy \\int_1^{\\sqrt{3}} \\ dx\\\\\nanswer: \\ \\int_{-\\sqrt3}^{-1} \\ dy \\int_1^{\\sqrt{4-y^2}} \\ dx + \\int_{-1}^{0} \\ dy \\int_1^{\\sqrt{3}} \\ dx\\\\\n\n\\\\\n\\ \n\\\\\n2) \\int \\dfrac{3x-5}{\\sqrt{9+6x-3x^2}}dx = \\\\\n= \\int \\dfrac{3x-3}{\\sqrt{9+6x-3x^2}}dx - \\int \\dfrac{2}{\\sqrt{9+6x-3x^2}}dx = \\\\\n= -\\int \\dfrac{1}{2\\sqrt{9+6x-3x^2}}d(9+6x-3x^2) -\\\\\n+ \\dfrac{2}{\\sqrt3}*\\int \\dfrac{1}{\\sqrt{4-(1-x)^2}}d(1-x) = \\\\\n\\dfrac{2}{\\sqrt3} sin^{-1}(\\dfrac{1}{2} - \\dfrac{x}{2}) - \\sqrt{9+6x-3x^2} +C)\\\\\nanswer: \\ \\dfrac{2}{\\sqrt3} sin^{-1}(\\dfrac{1}{2} - \\dfrac{x}{2}) - \\sqrt{9+6x-3x^2} +C"
Comments
Leave a comment