y=1+x21+x,dxdy=(1+x2)2(1+x)′(1+x2)−(1+x)(1+x2)′=(1+x2)2(1+x2)−(1+x)⋅2x=(1+x2)21−2x−x2,dx2d2y=dxd(1+x2)21−2x−x2=(1+x2)4(1−2x−x2)′(1+x2)2−(1−2x−x2)((1+x2)2)′=(1+x2)4(−2−2x)(1+x2)2−(1−2x−x2)⋅2(1+x2)⋅2x=(1+x2)42x5+6x4−4x3+4x2−6x−2=(1+x2)42(x−1)(x2+1)(x2+4x+1)=(1+x2)32(x−1)(x2+4x+1)
Comments