"y= \\dfrac{1+x}{1+x^2}\\,, \\\\ \n\\,\\\\\n\\dfrac{dy}{dx} = \\dfrac{(1+x)'(1+x^2) - (1+x)(1+x^2)'}{(1+x^2)^2} = \\dfrac{(1+x^2) - (1+x)\\cdot2x}{(1+x^2)^2} = \\dfrac{1-2x-x^2}{(1+x^2)^2} \\,, \\\\ \\, \\\\\n \\dfrac{d^2y}{dx^2} = \\dfrac{d}{dx} \\dfrac{1-2x-x^2}{(1+x^2)^2} = \\dfrac{(1-2x-x^2)'(1+x^2)^2 - (1-2x-x^2)\\big((1+x^2)^2\\big)'}{(1+x^2)^4} = \\dfrac{(-2-2x)(1+x^2)^2 - (1-2x-x^2)\\cdot2(1+x^2)\\cdot2x}{(1+x^2)^4} = \\dfrac{2x^5+6x^4-4x^3+4x^2-6x-2}{(1+x^2)^4} = \\dfrac{2(x-1)(x^2+1)(x^2+4x+1)}{(1+x^2)^4} = \\dfrac{2(x-1)(x^2+4x+1)}{(1+x^2)^3}"
Comments
Leave a comment