"y = \\cfrac{1+x}{1+x^2}"
"y^\\prime = \\cfrac{\\partial y}{\\partial x} = \\cfrac{1+x^2 - 2x(1+x)}{(1+x^2)^2} =\\\\= \n\\cfrac{1-2x-x^2}{(1+x^2)^2}"
"y^{\\prime\\prime} = \\cfrac{\\partial^2y}{\\partial x^2} = \\\\ = \n\\cfrac{(-2-2x)(1+x^2)^2 - 2(1+x^2)2x(1-2x-x^2)}{(1+x^2)^4}= \\\\=\n\\cfrac{-2(1+x)(1+x^2)-4x(1-2x-x^2)}{(1+x^2)^3}=\\\\=\n\\cfrac{-2((1+x)(1+x^2) +2x(1-2x-x^2))}{(1+x^2)^3} =\\\\=\n\\cfrac{-2(1+x^2+x+x^3+2x-4x^2-2x^3)}{(1+x^2)^3}=\\\\=\n\\cfrac{-2-6x+6x^2+2x^3}{(1+x^2)^3}"
Comments
Leave a comment