Answer to Question #145324 in Calculus for Abdulsalam Aminu Bandam

Question #145324
Find dy/dx and d^2y/dx^2 if y=1+x/1+x^2
1
Expert's answer
2020-11-19T16:33:16-0500

y=1+x1+x2y = \cfrac{1+x}{1+x^2}

y=yx=1+x22x(1+x)(1+x2)2==12xx2(1+x2)2y^\prime = \cfrac{\partial y}{\partial x} = \cfrac{1+x^2 - 2x(1+x)}{(1+x^2)^2} =\\= \cfrac{1-2x-x^2}{(1+x^2)^2}

y=2yx2==(22x)(1+x2)22(1+x2)2x(12xx2)(1+x2)4==2(1+x)(1+x2)4x(12xx2)(1+x2)3==2((1+x)(1+x2)+2x(12xx2))(1+x2)3==2(1+x2+x+x3+2x4x22x3)(1+x2)3==26x+6x2+2x3(1+x2)3y^{\prime\prime} = \cfrac{\partial^2y}{\partial x^2} = \\ = \cfrac{(-2-2x)(1+x^2)^2 - 2(1+x^2)2x(1-2x-x^2)}{(1+x^2)^4}= \\= \cfrac{-2(1+x)(1+x^2)-4x(1-2x-x^2)}{(1+x^2)^3}=\\= \cfrac{-2((1+x)(1+x^2) +2x(1-2x-x^2))}{(1+x^2)^3} =\\= \cfrac{-2(1+x^2+x+x^3+2x-4x^2-2x^3)}{(1+x^2)^3}=\\= \cfrac{-2-6x+6x^2+2x^3}{(1+x^2)^3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment