y=1+x1+x2y = \cfrac{1+x}{1+x^2}y=1+x21+x
y′=∂y∂x=1+x2−2x(1+x)(1+x2)2==1−2x−x2(1+x2)2y^\prime = \cfrac{\partial y}{\partial x} = \cfrac{1+x^2 - 2x(1+x)}{(1+x^2)^2} =\\= \cfrac{1-2x-x^2}{(1+x^2)^2}y′=∂x∂y=(1+x2)21+x2−2x(1+x)==(1+x2)21−2x−x2
y′′=∂2y∂x2==(−2−2x)(1+x2)2−2(1+x2)2x(1−2x−x2)(1+x2)4==−2(1+x)(1+x2)−4x(1−2x−x2)(1+x2)3==−2((1+x)(1+x2)+2x(1−2x−x2))(1+x2)3==−2(1+x2+x+x3+2x−4x2−2x3)(1+x2)3==−2−6x+6x2+2x3(1+x2)3y^{\prime\prime} = \cfrac{\partial^2y}{\partial x^2} = \\ = \cfrac{(-2-2x)(1+x^2)^2 - 2(1+x^2)2x(1-2x-x^2)}{(1+x^2)^4}= \\= \cfrac{-2(1+x)(1+x^2)-4x(1-2x-x^2)}{(1+x^2)^3}=\\= \cfrac{-2((1+x)(1+x^2) +2x(1-2x-x^2))}{(1+x^2)^3} =\\= \cfrac{-2(1+x^2+x+x^3+2x-4x^2-2x^3)}{(1+x^2)^3}=\\= \cfrac{-2-6x+6x^2+2x^3}{(1+x^2)^3}y′′=∂x2∂2y==(1+x2)4(−2−2x)(1+x2)2−2(1+x2)2x(1−2x−x2)==(1+x2)3−2(1+x)(1+x2)−4x(1−2x−x2)==(1+x2)3−2((1+x)(1+x2)+2x(1−2x−x2))==(1+x2)3−2(1+x2+x+x3+2x−4x2−2x3)==(1+x2)3−2−6x+6x2+2x3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment