Solution:
∫x2+x+5(x2+4)(x+1)dx\int \frac{x^2+x+5}{\left(x^2+4\right)\left(x+1\right)}dx∫(x2+4)(x+1)x2+x+5dx
=∫(x2+4)+(x+1)(x2+4)(x+1)dx=\int \frac{(x^2+4)+(x+1)}{\left(x^2+4\right)\left(x+1\right)}dx=∫(x2+4)(x+1)(x2+4)+(x+1)dx
=∫(1x2+4+1x+1)dx=\int (\frac{1}{x^2+4}+\frac{1}{x+1})dx=∫(x2+41+x+11)dx
=∫1x2+4dx+∫1x+1dx=\int \frac{1}{x^2+4}dx+\int \frac{1}{x+1}dx=∫x2+41dx+∫x+11dx
=∫1x2+22dx+∫1x+1dx=\int \frac{1}{x^2+2^2}dx+\int \frac{1}{x+1}dx=∫x2+221dx+∫x+11dx
On integrating,
=12tan−1(x2)+ln∣x+1∣+C=\frac{1}{2}\tan^{-1} \left(\frac{x}{2}\right)+\ln \left|x+1\right|+C=21tan−1(2x)+ln∣x+1∣+C [Using ∫1x2+a2dx=1atan−1(xa);∫1xdx=ln∣x∣\int \frac{1}{x^2+a^2}dx=\frac{1}{a}\tan^{-1} \left(\frac{x}{a}\right) ;\int \frac{1}{x}dx=\ln|x|∫x2+a21dx=a1tan−1(ax);∫x1dx=ln∣x∣ ]
Answer:
12tan−1(x2)+ln∣x+1∣+C\frac{1}{2}\tan^{-1} \left(\frac{x}{2}\right)+\ln \left|x+1\right|+C21tan−1(2x)+ln∣x+1∣+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment