Solution:
"\\int \\frac{x^2+x+5}{\\left(x^2+4\\right)\\left(x+1\\right)}dx"
"=\\int \\frac{(x^2+4)+(x+1)}{\\left(x^2+4\\right)\\left(x+1\\right)}dx"
"=\\int (\\frac{1}{x^2+4}+\\frac{1}{x+1})dx"
"=\\int \\frac{1}{x^2+4}dx+\\int \\frac{1}{x+1}dx"
"=\\int \\frac{1}{x^2+2^2}dx+\\int \\frac{1}{x+1}dx"
On integrating,
"=\\frac{1}{2}\\tan^{-1} \\left(\\frac{x}{2}\\right)+\\ln \\left|x+1\\right|+C" [Using "\\int \\frac{1}{x^2+a^2}dx=\\frac{1}{a}\\tan^{-1} \\left(\\frac{x}{a}\\right) ;\\int \\frac{1}{x}dx=\\ln|x|" ]
Answer:
"\\frac{1}{2}\\tan^{-1} \\left(\\frac{x}{2}\\right)+\\ln \\left|x+1\\right|+C"
Comments
Leave a comment