Answer to Question #136956 in Calculus for Sagar

Question #136956
Integrate x2+x+5/(x2+4)(x+1) dx
1
Expert's answer
2020-10-06T18:34:21-0400

Solution:

x2+x+5(x2+4)(x+1)dx\int \frac{x^2+x+5}{\left(x^2+4\right)\left(x+1\right)}dx

=(x2+4)+(x+1)(x2+4)(x+1)dx=\int \frac{(x^2+4)+(x+1)}{\left(x^2+4\right)\left(x+1\right)}dx

=(1x2+4+1x+1)dx=\int (\frac{1}{x^2+4}+\frac{1}{x+1})dx

=1x2+4dx+1x+1dx=\int \frac{1}{x^2+4}dx+\int \frac{1}{x+1}dx

=1x2+22dx+1x+1dx=\int \frac{1}{x^2+2^2}dx+\int \frac{1}{x+1}dx

On integrating,

=12tan1(x2)+lnx+1+C=\frac{1}{2}\tan^{-1} \left(\frac{x}{2}\right)+\ln \left|x+1\right|+C [Using 1x2+a2dx=1atan1(xa);1xdx=lnx\int \frac{1}{x^2+a^2}dx=\frac{1}{a}\tan^{-1} \left(\frac{x}{a}\right) ;\int \frac{1}{x}dx=\ln|x| ]

Answer:

12tan1(x2)+lnx+1+C\frac{1}{2}\tan^{-1} \left(\frac{x}{2}\right)+\ln \left|x+1\right|+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment