I = "\\int" (x2 + x2 + "\\frac{5}{(x^2+4)(x+1)}" )dx
Converting in partial fractions form, we get-
"\\frac{5}{(x^2+4)(x+1)} = \\frac{A}{(x+1)}+\\frac{Bx+C}{(x^2+4)}"
5 = (A+B)"x^2" + (B+C)x + (4A+C)
Equating the coefficients and solving equations, we get
A = 1 ; B = -1 ; C = 1
I = "\\int" (x2 + x2 + "\\frac{1}{(x+1)}-\\frac{x-1}{x^2+4}" )dx
I = "\\int" (2x2 + "\\frac{1}{(x+1)}-\\frac{x}{(x^2+4)}+\\frac{1}{(x^2+4)}" )dx
Since, integration of "\\frac{1}{x+1}" = ln(x+1) , integration of "\\frac{x}{x^2+4} is \\frac{1}{2}ln(x^2+4)" and integration of "\\frac{1}{x^2+4}" is "\\frac{1}{2}tan^{-1}\\frac{x}{2}" , we have
"I = \\frac{2x^3}{3}+ln(x+1)-\\frac{1}{2}[ln(x^2+4)-tan^{-1}(\\frac{x}{2})]+const"
Comments
Leave a comment