( 1 / x ) + ( 1 / y ) + ( 1 / z ) = 1 (1/x)+(1/y)+(1/z)= 1 ( 1/ x ) + ( 1/ y ) + ( 1/ z ) = 1
Now take partial derivative with respect to x in both sides and using chain rule we get
− 1 x 2 − 1 z 2 ∂ z ∂ x = 0 ⟹ ∂ z ∂ x = − ( z x ) 2 ⟹ ∂ z ∂ x ∣ ( 2 , 3 , 6 ) = − ( 6 2 ) 2 = − 9 -\frac{1}{x^2}-\frac{1}{z^2}\frac{\partial z}{\partial x}=0\\
\implies \frac{\partial z}{\partial x}=-(\frac{z}{x})^2\\
\implies \frac{\partial z}{\partial x}\bigg|_{(2,3,6)}=-(\frac{6}{2})^2=-9 − x 2 1 − z 2 1 ∂ x ∂ z = 0 ⟹ ∂ x ∂ z = − ( x z ) 2 ⟹ ∂ x ∂ z ∣ ∣ ( 2 , 3 , 6 ) = − ( 2 6 ) 2 = − 9 Now, since ( 1 / x ) + ( 1 / y ) + ( 1 / z ) = 1 (1/x)+(1/y)+(1/z)= 1 ( 1/ x ) + ( 1/ y ) + ( 1/ z ) = 1 is symmetric in x,y,z thus
∂ z ∂ y = − ( z y ) 2 ⟹ ∂ z ∂ y ∣ ( 2 , 3 , 6 ) = − ( 6 3 ) 2 = − 4 \frac{\partial z}{\partial y}=-(\frac{z}{y})^2\\
\implies \frac{\partial z}{\partial y}\bigg|_{(2,3,6)}=-(\frac{6}{3})^2=-4 ∂ y ∂ z = − ( y z ) 2 ⟹ ∂ y ∂ z ∣ ∣ ( 2 , 3 , 6 ) = − ( 3 6 ) 2 = − 4
Comments