"\\displaystyle(1)\\\\ \\textsf{Let} \\hspace{0.1cm} y = \\sin(55x) \\hspace{0.1cm} \\textsf{and}\\hspace{0.1cm} u = 55x\\\\\n\n\\Rightarrow y = \\sin{u}, \\hspace{0.1cm}\\&\\hspace{0.1cm} \\frac{\\mathrm{d}y}{\\mathrm{d}u} = \\cos{u}\\\\\n\nu = 55x, \\frac{\\mathrm{d}u}{\\mathrm{d}x} = 55\\\\\n\n\\textsf{By Composite rule of differentiation,}\\\\\n\n\\frac{\\mathrm{d}y}{\\mathrm{d}x} = \\frac{\\mathrm{d}y}{\\mathrm{d}u} \\times \\frac{\\mathrm{d}u}{\\mathrm{d}x}\\\\\n\n\n\\therefore \\frac{\\mathrm{d}y}{\\mathrm{d}x} = 55 \\times \\cos(u) = 55\\cos{55x}\\\\\n\n\n\n(2)\\\\ \\textsf{Let} \\hspace{0.1cm} y = \\cos(164x) \\hspace{0.1cm} \\textsf{and}\\hspace{0.1cm} v = 164x\\\\\n\n\\Rightarrow y = \\cos{v}, \\hspace{0.1cm}\\&\\hspace{0.1cm} \\frac{\\mathrm{d}y}{\\mathrm{d}v} = -\\sin{v}\\\\\n\nv = 164x, \\frac{\\mathrm{d}v}{\\mathrm{d}x} = 164\\\\\n\n\\textsf{By Composite rule of differentiation,}\\\\\n\n\\frac{\\mathrm{d}y}{\\mathrm{d}x} = \\frac{\\mathrm{d}y}{\\mathrm{d}v} \\times \\frac{\\mathrm{d}v}{\\mathrm{d}x}\\\\\n\n\n\\therefore \\frac{\\mathrm{d}y}{\\mathrm{d}x} = 164 \\times (-\\sin(v)) = -164\\sin{164x}"
Comments
Leave a comment