∫(x2+x2+5x2+4(x+1))dx=2∫x2dx+5∫x+1x2+4dx=\int \left(x^2+x^2+\frac{5}{x^2+4}(x+1)\right)dx=2\int x^{2}dx+5\int \frac{x+1}{x^2+4}dx=∫(x2+x2+x2+45(x+1))dx=2∫x2dx+5∫x2+4x+1dx=
2x2+12+1+5∫xx2+4dx+5∫1x2+4dx=2\frac{x^{2+1}}{2+1}+5\int \frac{x}{x^2+4}dx+5\int \frac{1}{x^2+4}dx=22+1x2+1+5∫x2+4xdx+5∫x2+41dx=
=2x33+52∫d(x2+4)x2+4+5∫1x2+22dx==\frac{2x^3}{3}+\frac{5}{2} \int{\frac{d(x^2+4)}{x^2+4}}+5 \int{\frac{1}{x^2+2^2}}dx==32x3+25∫x2+4d(x2+4)+5∫x2+221dx=
=2x33+52log∣x2+4∣+52arctan(x2)+C.=\frac{2x^3}{3}+\frac{5}{2}log|x^2+4|+\frac{5}{2}arctan(\frac{x}{2})+C.=32x3+25log∣x2+4∣+25arctan(2x)+C.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments