Question #136954
d) integrate x2 +x2 +5/(x2+4) (x+1) dx
1
Expert's answer
2020-10-06T12:25:21-0400

(x2+x2+5x2+4(x+1))dx=2x2dx+5x+1x2+4dx=\int \left(x^2+x^2+\frac{5}{x^2+4}(x+1)\right)dx=2\int x^{2}dx+5\int \frac{x+1}{x^2+4}dx=

2x2+12+1+5xx2+4dx+51x2+4dx=2\frac{x^{2+1}}{2+1}+5\int \frac{x}{x^2+4}dx+5\int \frac{1}{x^2+4}dx=

=2x33+52d(x2+4)x2+4+51x2+22dx==\frac{2x^3}{3}+\frac{5}{2} \int{\frac{d(x^2+4)}{x^2+4}}+5 \int{\frac{1}{x^2+2^2}}dx=

=2x33+52logx2+4+52arctan(x2)+C.=\frac{2x^3}{3}+\frac{5}{2}log|x^2+4|+\frac{5}{2}arctan(\frac{x}{2})+C.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS