Question #124353
Suppose a particle P is moving in the plane so that its coordinates are given by P(x,y), where x = 4cos2t, y = 7sin2t. (i) By finding a,b ∈ R such that x2 a2 + y2 b2 = 1, show that P is travelling on an elliptical path. [10 marks] (ii) Let L(t) be the distance from P to the origin. Obtain an expression for L(t).[8 marks] (iii) How fast is the distance between P and the origin changing when t = π/8?[7 marks]
1
Expert's answer
2020-06-29T18:53:05-0400

ANSWER

(i)a=4, b=7

Explanation: cos22t+sin22t=1cos^22t+sin^22t=1 . Therefore x242+y272=cos22t+sin22t=1\frac { { x }^{ 2 } }{ { 4 }^{ 2 } } +\frac { { y }^{ 2 } }{ { 7 }^{ 2 } } =\cos ^{ 2 }{ 2t } +\sin ^{ 2 }{ 2t=1 } ,or x216+y249=1\frac { { x }^{ 2 } }{ 16 } +\frac { { y }^{ 2 } }{ 49 } =1

ANSWER

(ii )The distance LL from the point P(x,y)P(x,y) to the origin is calculated by the formula L=x2+y2L=\sqrt { { x }^{ 2 }{ +y }^{ 2 } } . Therefore L(t)=x2(t)+y2(t)=16cos22t+49sin22tL(t)=\sqrt { { x }^{ 2 }(t){ +y }^{ 2 }(t) } =\sqrt { 16\cos ^{ 2 }{ 2t+49\sin ^{ 2 }{ 2 } t } } or L(t)= 16+33sin22tL(t)=\ \sqrt { 16+33\sin ^{ 2 }{ 2t } }

ANSWER

(iii)332 65\frac { 33\sqrt { 2 } \ }{ \sqrt { 65 } }

Explanation:

Let V(t)V(t) denote the rate of change of distance between points PP and the origin V(t)= dL(t)dt=332(sin2t)(2cos2t)216+33sin22t=33sin4t16+33sin22tV(t)=\ \frac { dL(t) }{ dt } =\frac { 33\cdot 2\cdot \left( \sin { 2t } \right) \cdot \left( 2\cos { 2t } \right) }{ 2\sqrt { 16+33\sin ^{ 2 }{ 2t } } } =\frac { 33\sin { 4t } }{ \sqrt { 16+33\sin ^{ 2 }{ 2t } } } .

sinπ2=1,sinπ4=12\sin { \frac { \pi }{ 2 } } =1,\quad \sin { \frac { \pi }{ 4 } } =\frac { 1 }{ \sqrt { 2 } } , so V(π8)=33sin4π816+33sin22π8=3316+332=33265V\left( \frac { \pi }{ 8 } \right) =\frac { 33\sin { \frac { 4\pi }{ 8 } } }{ \sqrt { 16+33\sin ^{ 2 }{ \frac { 2\pi }{ 8 } } } } =\frac { 33 }{ \sqrt { 16+\frac { 33 }{ 2 } } } =\frac { 33\sqrt { 2 } \quad }{ \sqrt { 65 } }


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS