∫x4−x3+4x2−4x2x3−4x−8dx=2∫x(x−1)(x2+4)x3−2x−4dx
Using partial fraction for the term inside the integral,,
x(x−1)(x2+4)x3−2x−4=xA+x−1B+x2+4Cx+D x3−2x−4=A(x−1)(x2+4)+Bx(x2+4)+(Cx+D)(x2−x)
Solving for A, B, C and D we get, A = 1, B = -1, C = 1, D = 2.
Thus,
∫x4−x3+4x2−4x2x3−4x−8dx=2∫(x1−x−11+x2+4x+2)dx =2(lnx−ln(x−1))+∫x2+42xdx+2∫x2+42dx =2lnx−2ln(x−1)+ln(x2+4)+2arctan(2x)+c =lnx2−ln(x−1)2+ln(x2+4)+2arctan(2x)+c =ln((x−1)2x2(x2+4))+2arctan(2x)+c
Comments