To solve this integration, we use the method of integration " Trigonometric Substitution "
Let "x=2sin \\theta" , then "dx=2cos \\theta d\\theta"
Note that when "x=0" then "\\theta =0"
and when "x=1" , then "\\theta=\\pi\/6"
Let "I=\\int\\limits_{0}^{1} \\frac { x^{2}} {(\\sqrt4-x^{2} )^{3}} dx" , then "I=\\int\\limits_{0}^{\\pi\/6} \\frac { 4sin^{2}x} {8cos^{3}\\theta} *2cos \\theta d\\theta =\\int\\limits_{0}^{\\pi\/6} tan^{2}\\theta d\\theta"
Thus "I=\\int\\limits_{0}^{\\pi\/6} (sec^{2}\\theta-1)d\\theta=[tan\\theta-\\theta]^{\\pi\/6}_{0}"
and then "I=[tan\\theta-\\theta]^{\\pi\/6}_{0}=(1\/\\sqrt3)-\\pi\/6"
Therefore we have that
"\\int\\limits_{0}^{1} \\frac { x^{2}} {(\\sqrt4-x^{2} )^{3}} dx=(1\/\\sqrt3)-(\\pi\/6)"
Comments
Leave a comment