Question #124052

A wire of length 100 centimeters is cut into two pieces. One piece is bent to form a square.

The other piece is bent to form an equilateral triangle. Find the dimensions of the two pieces of wire so that the sum of the areas of the square and the triangle is minimized.


1
Expert's answer
2020-06-28T18:37:40-0400

Let ss be the side of square and aa be the side of equilateral triangle.


Since, the perimeter of square and triangle together formed from the wire of length 100100 cm, therefore,


4s+3a=1004s+3a=100


4s+3a3a=1003a4s+3a-3a=100-3a


4s=1003a4s=100-3a


s=1003a4s=\frac{100-3a}{4}


The area of square with side ss is AS=s2A_S=s^2


The area of equilateral triangle with side aa is AT=34a2A_T=\frac{\sqrt{3}}{4}a^2


The sum of the area of both the square and triangle is,


A=AS+ATA=A_S+A_T


A=s2+34a2A=s^2+\frac{\sqrt{3}}{4}a^2


Substitute 1003a4\frac{100-3a}{4} for ss into above equation to express the area into a single variable aa as,


A(a)=(1003a4)2+34a2A(a)=(\frac{100-3a}{4})^2+\frac{\sqrt{3}}{4}a^2


Differentiate A(a)A(a) with respect to aa as,


A(a)=dda(1003a4)2+34dda(a2)A'(a)=\frac{d}{da}(\frac{100-3a}{4})^2+\frac{\sqrt{3}}{4}\frac{d}{da}(a^2)


=2(1003a4)dda(1003a4)+34(2a)=2(\frac{100-3a}{4})\frac{d}{da}(\frac{100-3a}{4})+\frac{\sqrt{3}}{4}(2a)


=2(1003a4)(34)+3a2=2(\frac{100-3a}{4})(-\frac{3}{4})+\frac{\sqrt{3}a}{2}


=9a3008+3a2=\frac{9a-300}{8}+\frac{\sqrt{3}a}{2}


=9a300+43a8=\frac{9a-300+4\sqrt{3}a}{8}


=a(9+43)3008=\frac{a(9+4\sqrt{3})-300}{8}


Equate A(a)A'(a) to zero in order to find the critical value as,


A(a)=0A'(a)=0


a(9+43)3008=0\frac{a(9+4\sqrt{3})-300}{8}=0


a(9+43)300=0a(9+4\sqrt{3})-300=0


a=3009+43a=\frac{300}{9+4\sqrt{3}}


Plug 3009+43\frac{300}{9+4\sqrt{3}} for aa into relation s=1003a4s=\frac{100-3a}{4} and solve for ss as,


s=1003(3009+43)4s=\frac{100-3(\frac{300}{9+4\sqrt{3}})}{4}


=900+40039004(9+43)=\frac{900+400\sqrt{3}-900}{4(9+4\sqrt{3})}


=40034(9+43)=\frac{400\sqrt{3}}{4(9+4\sqrt{3})}


=10039+43=\frac{100\sqrt{3}}{9+4\sqrt{3}}


Here, the second derivative A"(a)=9+438>0A"(a)=\frac{9+4\sqrt{3}}{8}>0 , so total area is minimum.


Therefore, the dimensions of the two pieces are:


Sides of square is: s=10039+4310.874s=\frac{100\sqrt{3}}{9+4\sqrt{3}}\approx10.874 cmSides of equilateral triangle is: a=3009+4318.834a=\frac{300}{9+4\sqrt{3}}\approx18.834 cm

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS