a)
"y=x^{2} \\quad ,y=4 x-x^{2} \\quad ,y=6 \\\\[1 em]\n\\therefore x^{2}=4 x-x^{2} \\rightarrow x^{2}-2 x=0 \\rightarrow x=0,2 \\\\[1 em]\n\\therefore V=\\pi \\int_{0}^{2} r_{1}^{2}-r_{2}^{2} d x \\\\[1 em]\nr_{1}=6-x^{2} \\quad, r_{2}=6-4 x+x^{2} \\\\[1 em]\n\n\n\\therefore V=\\pi \\int_{0}^{2}\\left(6-x^{2}\\right)^{2}-\\left(6-4 x+x^{2}\\right)^{2} dx\\\\[1 em]\n=\\pi \\int_{0}^{2} 36-12 x^{2}+x^{4}-\\left(x^{4}-8 x^{3}+28 x^{2}-48 x+36\\right) d x \\\\[1 em]\n=\\pi \\int_{0}^{2} 36-12 x^{2}+x^{4}-x^{4}+8 x^{3}-28 x^{2}+48 x-36 d x \\\\[1 em]\n=\\pi \\int_{0}^{2} 8 x^{3}-40 x^{2}+48 x d x \\\\[1 em]\n=\\pi\\left(2 x^{4}-\\frac{40}{3} x^{3}+24 x^{2}\\right) \\bigg|_{0}^{2} \\\\[1 em]\n\\therefore V\\approx 67\\\\[2 em]\nb)\nf^{\\prime}(x) >0 ~\\text{in} ~(-\\infty ,-2),(-2,3) ~\\text{therefore the function increasing}\\\\[1 em]\n\nf^{\\prime}(x) <0 ~\\text{in} ~(3,\\infty ) ~\\text{therefore the function decreasing}\\\\[1 em]\nf^{\\prime}(x) =0 ~\\text{at} ~x=-2 ,x=3 \\\\[1 em]\\text{Therefore the tangent at these points is horizontal}\\\\[1 em]"
Comments
Leave a comment