Question #124036

Suppose a particle P is moving in the plane so that its coordinates are given by P(x; y),

where x = 4 cos 2t, y = 7 sin 2t.

(i) By finding a; b ϵ R such that x²/a² + y²/b² =1, show that P is travelling on an elliptical path.

(ii) Let L(t) be the distance from P to the origin. Obtain an expression for L(t).

(iii) How fast is the distance between P and the origin changing when t = π/8?


1
Expert's answer
2020-07-01T15:09:37-0400

Solution a. We know that the parametric equation of an ellipse is

 x= acosθ and y =bsinθ

where a =semi major axis and

b= semi minor axis

therefore, comparing with

 x= 4 cost 2t, and y = 7 sint 2t

we get a = 4, b=7 and θ = 2t

therefore, using L.H.S from equation of an ellipse :

(x2a2)+(y2b2)(\frac{x^2}{a^2}) + (\frac{y^2}{b^2})


=(16cos22t)16+(49sint22t)49\frac{(16 cos^22t)}{16 }+\frac{(49sint^22t)}{49}


= 1= R.H.S

Hence, the particle is moving in an elliptical path.


ii) L(t)=((x0)2+(y0)2)L(t) =( (x- 0)^2 + (y - 0)^2) 0.5

((16cos22t+49sin2t))((16 cos^22t + 49 sin^2t)) 0.5

=(16cost22t+49(1cost22t))(16cost^22t + 49 (1- cost ^22t)) 0.5

=(4933cost22t)=(49 - 33 cost^22t) 0.5

(Answer)

iii) Rate of change of L(t) = dL(t)dt\frac{dL(t)}{dt}


=d[(4933(1+cost4t)122]dt=\frac{d[\frac{(49 - 33(1+cost4t)^\frac{1}{2}}{2}]} {dt}


=[d(983333cos4t)2]12dt=\frac{[\frac{d (98 - 33- 33cos 4t)}{2}]^\frac{1}{2} }{ dt}


=[d(6533cos4t)2]12dt= \frac{[\frac{d(65-33cos 4t)}{2}]^\frac{1}{2}}{dt}


=(1212)d[(6533cos4t)]12=(\frac{1}{2}^\frac{1}{2}) * d[(65 - 33cos4t)]^\frac{1}{2}



=(12122(6533cos4t)12)[334sin4t]=(\frac{1}{2 }^\frac{1}{2} * 2 * (65 - 33cos4t)^\frac{1}{2}) * [33*4*sin4t]

=66sin4t(13066cos4t)12=\frac{66 sin4t}{(130-66cos4t)^\frac{1}{2}}


Putting 

t=π / 8 or (π /8)*(180/π )= 22.5 degree

we get ,


dL(t)dt=(66sin(422.5))(13066cos(422.5))12\frac{d L(t)}{dt }= \frac{(66 sin(4*22.5))}{(130 - 66 cos (4*22.5))^\frac{1}{2}}


= 661300.5\frac{66} {1300.5}


= 5.788 unitsrad\frac{units}{rad} (Answer)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS