Given :
"\\frac{(e^{3x})(\\sqrt{2x-5)}}{(6-5x)^{4}}=y"
Rewrite as "{(lne^{3x})+ln\\sqrt{(2x-5)}}-{ln(6-5x)^{4}}=lny"
"{(3x})+{\\frac{1}{2}*{ln(2x-5)}}-{4ln (6-5x)}=ln y"
Differentiate
3+"\\frac{1}{2x-5}-\\frac{4(-5)}{6-5x} = \\frac{1 y'}{y}"
"y'= y(3+\\frac{1}{2x-5}+\\frac{20}{6-5x})"
Solution : y' = e3x"\u221a2x-5)\/(6-5x)^4](3+\\frac{1}{2x-5}+\\frac{20}{6-5x})"
Part 2:
To find : "\\int\\frac{\\left(1+x^{\\left(3\\right)^{ }}\\right)^{\\frac{1}{3}}}{x^{5}} dx"
solution : Take u= "\\frac{\\left(1+x^{\\left(3\\right)^{ }}\\right)^{\\frac{1}{3}}}{x^{ }}"
du= "\\frac{x}{\\left(1+x^{\\left(3\\right)}\\right)^{\\frac{2}{3}}}-\\frac{\\left(1+x^{\\left(3\\right)^{ }}\\right)^{\\frac{1}{3}}}{x^{2}}" dx
Hence "\\int\\frac{\\left(1+x^{\\left(3\\right)^{ }}\\right)^{\\frac{1}{3}}}{x^{5}} dx" = "\\int" -u3 du
= -"\\frac{u^{4}}{4} +c"
substitute for u , and the solution is =- "\\frac{(x^{3}+1)^{\\frac{4}{3}}}{4x^{4}} +c"
Comments
Leave a comment