Given :
(6−5x)4(e3x)(2x−5)=y
Rewrite as (lne3x)+ln(2x−5)−ln(6−5x)4=lny
(3x)+21∗ln(2x−5)−4ln(6−5x)=lny
Differentiate
3+2x−51−6−5x4(−5)=y1y′
y′=y(3+2x−51+6−5x20)
Solution : y' = e3x√2x−5)/(6−5x)4](3+2x−51+6−5x20)
Part 2:
To find : ∫x5(1+x(3))31dx
solution : Take u= x(1+x(3))31
du= (1+x(3))32x−x2(1+x(3))31 dx
Hence ∫x5(1+x(3))31dx = ∫ -u3 du
= -4u4+c
substitute for u , and the solution is =- 4x4(x3+1)34+c
Comments