Question #124030
Using logarithmic differentiation to find the derivative of f(x)=[(e^3x√2x-5)/(6-5x)^4]


(2) Find the integral of[ (x^3+1)^1/3x
^5]dx
1
Expert's answer
2020-07-01T15:11:32-0400

Given :


(e3x)(2x5)(65x)4=y\frac{(e^{3x})(\sqrt{2x-5)}}{(6-5x)^{4}}=y


Rewrite as (lne3x)+ln(2x5)ln(65x)4=lny{(lne^{3x})+ln\sqrt{(2x-5)}}-{ln(6-5x)^{4}}=lny


(3x)+12ln(2x5)4ln(65x)=lny{(3x})+{\frac{1}{2}*{ln(2x-5)}}-{4ln (6-5x)}=ln y

Differentiate


3+12x54(5)65x=1yy\frac{1}{2x-5}-\frac{4(-5)}{6-5x} = \frac{1 y'}{y}

y=y(3+12x5+2065x)y'= y(3+\frac{1}{2x-5}+\frac{20}{6-5x})


Solution : y' = e3x2x5)/(65x)4](3+12x5+2065x)√2x-5)/(6-5x)^4](3+\frac{1}{2x-5}+\frac{20}{6-5x})



Part 2:


To find : (1+x(3))13x5dx\int\frac{\left(1+x^{\left(3\right)^{ }}\right)^{\frac{1}{3}}}{x^{5}} dx


solution : Take u= (1+x(3))13x\frac{\left(1+x^{\left(3\right)^{ }}\right)^{\frac{1}{3}}}{x^{ }}


du= x(1+x(3))23(1+x(3))13x2\frac{x}{\left(1+x^{\left(3\right)}\right)^{\frac{2}{3}}}-\frac{\left(1+x^{\left(3\right)^{ }}\right)^{\frac{1}{3}}}{x^{2}} dx


Hence (1+x(3))13x5dx\int\frac{\left(1+x^{\left(3\right)^{ }}\right)^{\frac{1}{3}}}{x^{5}} dx = \int -u3 du

= -u44+c\frac{u^{4}}{4} +c


substitute for u , and the solution is =- (x3+1)434x4+c\frac{(x^{3}+1)^{\frac{4}{3}}}{4x^{4}} +c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS