a)(i) Given dtdy=t1+t2
⟹dy=(t1+t)dt
Now by integrating, we get
y=log(t)+2t2+c
By given condition y(1)=0
⟹c=−21
Hence, solution is y=log(t)+2t2−21 .
log(t) exists for postive values of t, hence interval of existence of solution is (0,∞) .
a)(ii) Given (t+1)dtdy=1−y,y(t=0)=3
⟹1−ydy=t+1dt
By integrating on both sides, we get
−log(1−y)=log(t+1)−log(c)⟹(1−y)(t+1)=c
Now, by y(0)=3, (1−3)(0+1)=c
⟹c=−2 .
Hence solution is (1−y)(t+1)=−2⟹y=1+t+12
Solution y is not defined at t=-1 and solution contain y(t=0)=3.
Hence interval of existence of solution (−1,∞) .
b)(i) Let I = ∫xln(x+1)dx = =2x2log(x+1)−∫2x2x+11dx
Now for ∫x+1x2dx , let u=x+1⟹dx=du
So, ∫x+1x2dx=∫u(u−1)2du = ∫(u−2+u1)du=2u2−2u+log(u)=2(x+1)2−2(x+1)+log(x+1) .
Hence, I = 2x2log(x+1)+4(x+1)2−(x+1)+2log(x+1)
b(ii) Let I = ∫xsin(2(lnx))cos(2(lnx))dx
Suppose ln(x)=u⟹xdx=du
So, ∫xsin(2(lnx))cos(2(lnx))dx=∫sin(2u)cos(2u)du
=21∫2sin(2u)cos(2u)du=21∫sin(4u)du
=−81cos(4u)=−81cos(4 ln(x))
Comments