Question #124025
(a) Find the solution of the initial-value problem and determine its interval of existence (i.e domain of the resulting function y).
(i) dy /dt = 1+t2 /t , y(t-1)=0
(ii) (t + 1)dy /dt = 1−y, y(t = 0) = 3. [Hint: Let A = −(±e−C).]
(b) Evaluate the following integrals: (i) xln(x +1)dx (ii) sin2(ln x)cos2(lnx)/ x dx.
1
Expert's answer
2020-07-02T19:29:45-0400

a)(i) Given dydt=1+t2t\frac{dy}{dt }= \frac{1+t^2}{ t}

    dy=(1t+t)dt\implies {dy}= (\frac{1}{ t}+t)dt

Now by integrating, we get

y=log(t)+t22+cy=log(t)+\frac{t^2}{2} + c

By given condition y(1)=0y(1)=0

    c=12\implies c=-\frac{1}{2}

Hence, solution is y=log(t)+t2212y=log(t)+\frac{t^2}{2} -\frac{1}{2} .

log(t) exists for postive values of t, hence interval of existence of solution is (0,)(0,\infin) .


a)(ii) Given (t+1)dydt=1y,y(t=0)=3(t + 1)\frac{dy}{dt} = 1−y, y(t = 0) = 3

    dy1y=dtt+1\implies \frac{dy}{1-y} =\frac{dt}{t+1}

By integrating on both sides, we get

log(1y)=log(t+1)log(c)    (1y)(t+1)=c-log(1-y) = log(t+1) -log(c)\\ \implies (1-y)(t+1) =c

Now, by y(0)=3, (13)(0+1)=c(1-3)(0+1)=c

    c=2\implies c=-2 .

Hence solution is (1y)(t+1)=2    y=1+2t+1(1-y)(t+1)=-2 \implies y=1+\frac{2}{t+1}

Solution y is not defined at t=-1 and solution contain y(t=0)=3.

Hence interval of existence of solution (1,)(-1,\infin) .


b)(i) Let I = xln(x+1)dx∫ x ln ( x + 1 ) d x = =x22log(x+1)x221x+1dx= \frac{x^2}{2} log ( x + 1 ) − ∫ \frac{x^2}{2}\frac{1}{x+1} d x

Now for x2x+1dx\int \frac{x^2}{x+1}dx , let u=x+1    dx=duu = x+1 \implies dx = du

So, x2x+1dx=(u1)2udu\int \frac{x^2}{x+1}dx = \int \frac{(u-1)^2}{u}du = (u2+1u)du=u222u+log(u)=(x+1)222(x+1)+log(x+1)\int (u-2+\frac{1}{u})du = \frac{u^2}{2} -2u+log(u) = \frac{(x+1)^2}{2} - 2(x+1) +log(x+1) .

Hence, I = x22log(x+1)+(x+1)24(x+1)+log(x+1)2\frac{x^2}{2}log(x+1)+\frac{(x+1)^2}{4} - (x+1) + \frac{log(x+1)}{2}


b(ii) Let I = sin(2(lnx))cos(2(lnx))xdx\int \frac{sin (2(ln x))cos (2(lnx)) }{ x} dx

Suppose ln(x)=u    dxx=duln(x) = u \implies \frac{dx}{x} = du

So, sin(2(lnx))cos(2(lnx))xdx=sin(2u)cos(2u)du\int \frac{sin (2(ln x))cos (2(lnx)) }{ x} dx = \int sin (2u)cos (2u) du

=122sin(2u)cos(2u)du=12sin(4u)du= \frac{1}{2} \int 2sin (2u)cos (2u) du = \frac{1}{2} \int sin(4u) du

=18cos(4u)=18cos(4 ln(x))= -\frac{1}{8} cos(4u) = -\frac{1}{8} cos(4 \ ln(x))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS