a)(i) Given "\\frac{dy}{dt }= \\frac{1+t^2}{ t}"
"\\implies {dy}= (\\frac{1}{ t}+t)dt"
Now by integrating, we get
"y=log(t)+\\frac{t^2}{2} + c"
By given condition "y(1)=0"
"\\implies c=-\\frac{1}{2}"
Hence, solution is "y=log(t)+\\frac{t^2}{2} -\\frac{1}{2}" .
log(t) exists for postive values of t, hence interval of existence of solution is "(0,\\infin)" .
a)(ii) Given "(t + 1)\\frac{dy}{dt} = 1\u2212y, y(t = 0) = 3"
"\\implies \\frac{dy}{1-y} =\\frac{dt}{t+1}"
By integrating on both sides, we get
"-log(1-y) = log(t+1) -log(c)\\\\\n\\implies (1-y)(t+1) =c"
Now, by y(0)=3, "(1-3)(0+1)=c"
"\\implies c=-2" .
Hence solution is "(1-y)(t+1)=-2\n\\implies y=1+\\frac{2}{t+1}"
Solution y is not defined at t=-1 and solution contain y(t=0)=3.
Hence interval of existence of solution "(-1,\\infin)" .
b)(i) Let I = "\u222b\n\nx\nln\n(\nx\n+\n1\n)\n \nd\nx" = "=\n\\frac{x^2}{2}\nlog\n(\nx\n+\n1\n)\n\u2212\n\u222b\n \n\\frac{x^2}{2}\\frac{1}{x+1}\nd\nx"
Now for "\\int \\frac{x^2}{x+1}dx" , let "u = x+1 \\implies dx = du"
So, "\\int \\frac{x^2}{x+1}dx = \\int \\frac{(u-1)^2}{u}du" = "\\int (u-2+\\frac{1}{u})du = \\frac{u^2}{2} -2u+log(u) = \\frac{(x+1)^2}{2} - 2(x+1) +log(x+1)" .
Hence, I = "\\frac{x^2}{2}log(x+1)+\\frac{(x+1)^2}{4} - (x+1) + \\frac{log(x+1)}{2}"
b(ii) Let I = "\\int \\frac{sin (2(ln x))cos (2(lnx)) }{ x} dx"
Suppose "ln(x) = u \\implies \\frac{dx}{x} = du"
So, "\\int \\frac{sin (2(ln x))cos (2(lnx)) }{ x} dx = \\int sin (2u)cos (2u) du"
"= \\frac{1}{2} \\int 2sin (2u)cos (2u) du = \\frac{1}{2} \\int sin(4u) du"
"= -\\frac{1}{8} cos(4u) = -\\frac{1}{8} cos(4 \\ ln(x))"
Comments
Leave a comment