(a) y(x)=e2xsinx.
Let's differentiate this function.
dxdy=(e2x)′sinx+e2x(sinx)′=2e2xsinx+e2xcosx.
dx2d2y=2(e2x)′sinx+2e2x(sinx)′+(e2x)′cosx+e2x(cosx)′=
=4e2xsinx+2e2xcosx+2e2xcosx−e2xsinx=3e2xsinx+4e2xcosx.
Hence we have:
dx2d2y−4dxdy+5y=3e2xsinx+4e2xcosx−4(2e2xsinx+e2xcosx)+5e2xsinx=
=3e2xsinx+4e2xcosx−8e2xsinx−4e2xcosx+5e2xsinx=0,
so that the function y(x)=e2xsinx is a solution to the differential equation dx2d2y−4dxdy+5y=0.
(b)
- (i) (ln(1+sin2x))′=1+sin2x1(1+sin2x)′=
1+sin2x12sinxcosx=1+sin2xsin2x.
- (ii) (xx)′=(exlnx)′=exlnx(xlnx)′=exlnx((x)′lnx+x(lnx)′)=
=exlnx(1lnx+xx1)=exlnx(lnx+1)=xx(lnx+1).
(c) We'll use the method of partial fractions to evaluate the integral ∫x4−x3+4x2−4x2x3−4x−8dx.
x4−x3+4x2−4x2x3−4x−8=x3(x−1)+4x(x−1)2x3−4x−8=(x3+4x)(x−1)2x3−4x−8=
=x(x−1)(x2+4)2x3−4x−8=xA+x−1B+x2+4Cx+D.
Then we have:
A(x−1)(x2+4)+Bx(x2+4)+(Cx+D)x(x−1)=2x3−4x−8.
A(x3+4x−x2−4)+B(x3+4x)+C(x3−x2)+D(x2−x)=2x3−4x−8.
(A+B+C)x3+(−A−C+D)x2+(4A+4B−D)x+(−4A)=2x3−4x−8.
Hence:
A+B+C=2,
−A−C+D=0,
4A+4B−D=−4,
−4A=−8.
From the last equation: A=2. We have:
B+C=0,D−C=2,4B−D=−12.
Then B=−C,D=C+2,
and we have the next equation: −4C−2−C=−12,
−5C=−10,C=2.
Then B=−C=−2,D=C+2=2+2=4.
So we have:
x4−x3+4x2−4x2x3−4x−8=x2−x−12+x2+42x+4.
Now we can evaluate the integral:
∫x4−x3+4x2−4x2x3−4x−8dx=∫(x2−x−12+x2+42x+4)dx=
=∫x2dx−∫x−12dx+∫x2+42x+4dx=∫x2dx−∫x−12dx+∫x2+42xdx+∫x2+44dx=
=∫x2dx−∫x−12dx+∫x2+4d(x2+4)+∫x2+44dx=
=2ln∣x∣−2ln∣x−1∣+ln∣x2+4∣+4⋅21arctan2x+C=
=2ln∣x∣−2ln∣x−1∣+ln∣x2+4∣+2arctan2x+C.
Comments
Leave a comment