(a) "y(x)=e^{2x} sin x."
Let's differentiate this function.
"\\frac{dy}{dx}=(e^{2x})^\\prime sin x+e^{2x}(sin x)^\\prime=2e^{2x}sin x+e^{2x}cos x."
"\\frac{d^2y}{dx^2}=2(e^{2x})^\\prime sin x+2e^{2x}(sin x)^\\prime+(e^{2x})^\\prime cos x+ e^{2x}(cos x)^\\prime="
"=4e^{2x} sin x+2e^{2x}cos x+ 2e^{2x}cos x-e^{2x} sin x=3e^{2x} sin x+4e^{2x}cos x."
Hence we have:
"\\frac{d^2y}{dx^2} - 4\\frac{dy}{dx}+5y=3e^{2x} sin x+4e^{2x}cos x-4(2e^{2x}sin x+e^{2x}cos x)+5e^{2x}sin x="
"=3e^{2x} sin x+4e^{2x}cos x-8e^{2x}sin x-4e^{2x}cos x+5e^{2x}sin x=0,"
so that the function "y(x)=e^{2x} sin x" is a solution to the differential equation "\\frac{d^2y}{dx^2} - 4\\frac{dy}{dx}+5y=0."
(b)
"\\frac{1}{1+sin^2x}2sin xcos x=\\frac{sin 2x}{1+sin^2x}."
"=e^{x ln x}(1ln x+x\\frac{1}{x})=e^{x ln x}(ln x+1)=x^x (lnx+1)."
(c) We'll use the method of partial fractions to evaluate the integral "\\int \\frac{2x^3 \u22124x\u22128}{x^4 \u2212x^3 +4x^2 \u22124x} dx."
"\\frac{2x^3 \u22124x\u22128}{x^4 \u2212x^3 +4x^2 \u22124x}=\\frac{2x^3 \u22124x\u22128}{x^3(x-1)+4x(x-1)}= \\frac{2x^3 \u22124x\u22128}{(x^3+4x)(x-1)}="
"=\\frac{2x^3 \u22124x\u22128}{x(x-1)(x^2+4)}=\\frac{A}{x}+\\frac{B}{x-1}+\\frac{Cx+D}{x^2+4}."
Then we have:
"A(x-1)(x^2+4)+Bx(x^2+4)+(Cx+D)x(x-1)=2x^3-4x-8."
"A(x^3+4x-x^2-4)+B(x^3+4x)+C(x^3-x^2)+D(x^2-x)=2x^3-4x-8."
"(A+B+C)x^3+(-A-C+D)x^2+(4A+4B-D)x+(-4A)=2x^3-4x-8."
Hence:
"A+B+C=2,"
"\u2212A\u2212C+D=0,"
"4A+4B\u2212D=\u22124,"
"\u22124A=\u22128."
From the last equation: "A=2". We have:
"B+C=0, D-C=2, 4B-D=-12."
Then "B=-C, D=C+2,"
and we have the next equation: "-4C-2-C=-12,"
"-5C=-10, C=2."
Then "B=-C=-2, D=C+2=2+2=4."
So we have:
"\\frac{2x^3 \u22124x\u22128}{x^4 \u2212x^3 +4x^2 \u22124x}=\\frac{2}{x}-\\frac{2}{x-1}+\\frac{2x+4}{x^2+4}."
Now we can evaluate the integral:
"\\int \\frac{2x^3 \u22124x\u22128}{x^4 \u2212x^3 +4x^2 \u22124x} dx=\\int(\\frac{2}{x}-\\frac{2}{x-1}+\\frac{2x+4}{x^2+4})dx="
"=\\int\\frac{2}{x}dx-\\int\\frac{2}{x-1}dx+\\int\\frac{2x+4}{x^2+4}dx=\\int\\frac{2}{x}dx-\\int\\frac{2}{x-1}dx+\\int\\frac{2x}{x^2+4}dx+\\int\\frac{4}{x^2+4}dx="
"=\\int\\frac{2}{x}dx-\\int\\frac{2}{x-1}dx+\\int\\frac{d(x^2+4)}{x^2+4}+\\int\\frac{4}{x^2+4}dx="
"=2ln|x|-2ln|x-1|+ln|x^2+4|+4\\cdot \\frac{1}{2}arctan\\frac{x}{2}+C="
"=2ln|x|-2ln|x-1|+ln|x^2+4|+2arctan\\frac{x}{2}+C."
Comments
Leave a comment