Answer to Question #124029 in Calculus for Nestor Freeman

Question #124029
(a) Verify that y = e2xsinx is a solution to the differential equation d2y/dx2 - 4dy/dx+5y=0

(b) Differentiate the following functions with respect to x: (i) ln(1 + sin2 x) (ii) xx.
(c) Evaluate the integral 2x3 −4x−8 /x4 −x3 +4x2 −4x dx.
1
Expert's answer
2020-06-28T18:28:25-0400

(a) y(x)=e2xsinx.y(x)=e^{2x} sin x.

Let's differentiate this function.

dydx=(e2x)sinx+e2x(sinx)=2e2xsinx+e2xcosx.\frac{dy}{dx}=(e^{2x})^\prime sin x+e^{2x}(sin x)^\prime=2e^{2x}sin x+e^{2x}cos x.

d2ydx2=2(e2x)sinx+2e2x(sinx)+(e2x)cosx+e2x(cosx)=\frac{d^2y}{dx^2}=2(e^{2x})^\prime sin x+2e^{2x}(sin x)^\prime+(e^{2x})^\prime cos x+ e^{2x}(cos x)^\prime=

=4e2xsinx+2e2xcosx+2e2xcosxe2xsinx=3e2xsinx+4e2xcosx.=4e^{2x} sin x+2e^{2x}cos x+ 2e^{2x}cos x-e^{2x} sin x=3e^{2x} sin x+4e^{2x}cos x.

Hence we have:

d2ydx24dydx+5y=3e2xsinx+4e2xcosx4(2e2xsinx+e2xcosx)+5e2xsinx=\frac{d^2y}{dx^2} - 4\frac{dy}{dx}+5y=3e^{2x} sin x+4e^{2x}cos x-4(2e^{2x}sin x+e^{2x}cos x)+5e^{2x}sin x=

=3e2xsinx+4e2xcosx8e2xsinx4e2xcosx+5e2xsinx=0,=3e^{2x} sin x+4e^{2x}cos x-8e^{2x}sin x-4e^{2x}cos x+5e^{2x}sin x=0,

so that the function y(x)=e2xsinxy(x)=e^{2x} sin x is a solution to the differential equation d2ydx24dydx+5y=0.\frac{d^2y}{dx^2} - 4\frac{dy}{dx}+5y=0.

(b)

  • (i) (ln(1+sin2x))=11+sin2x(1+sin2x)=(ln(1 + sin^2x))^\prime =\frac{1}{1+sin^2x}(1+sin^2x)^\prime=

11+sin2x2sinxcosx=sin2x1+sin2x.\frac{1}{1+sin^2x}2sin xcos x=\frac{sin 2x}{1+sin^2x}.

  • (ii) (xx)=(exlnx)=exlnx(xlnx)=exlnx((x)lnx+x(lnx))=(x^x)^\prime=(e^{x ln x})^\prime=e^{x ln x}(x ln x)^\prime=e^{x ln x}((x)^\prime ln x+ x (ln x)^\prime)=

=exlnx(1lnx+x1x)=exlnx(lnx+1)=xx(lnx+1).=e^{x ln x}(1ln x+x\frac{1}{x})=e^{x ln x}(ln x+1)=x^x (lnx+1).

(c) We'll use the method of partial fractions to evaluate the integral 2x34x8x4x3+4x24xdx.\int \frac{2x^3 −4x−8}{x^4 −x^3 +4x^2 −4x} dx.

2x34x8x4x3+4x24x=2x34x8x3(x1)+4x(x1)=2x34x8(x3+4x)(x1)=\frac{2x^3 −4x−8}{x^4 −x^3 +4x^2 −4x}=\frac{2x^3 −4x−8}{x^3(x-1)+4x(x-1)}= \frac{2x^3 −4x−8}{(x^3+4x)(x-1)}=

=2x34x8x(x1)(x2+4)=Ax+Bx1+Cx+Dx2+4.=\frac{2x^3 −4x−8}{x(x-1)(x^2+4)}=\frac{A}{x}+\frac{B}{x-1}+\frac{Cx+D}{x^2+4}.

Then we have:

A(x1)(x2+4)+Bx(x2+4)+(Cx+D)x(x1)=2x34x8.A(x-1)(x^2+4)+Bx(x^2+4)+(Cx+D)x(x-1)=2x^3-4x-8.

A(x3+4xx24)+B(x3+4x)+C(x3x2)+D(x2x)=2x34x8.A(x^3+4x-x^2-4)+B(x^3+4x)+C(x^3-x^2)+D(x^2-x)=2x^3-4x-8.

(A+B+C)x3+(AC+D)x2+(4A+4BD)x+(4A)=2x34x8.(A+B+C)x^3+(-A-C+D)x^2+(4A+4B-D)x+(-4A)=2x^3-4x-8.

Hence:

A+B+C=2,A+B+C=2,

AC+D=0,−A−C+D=0,

4A+4BD=4,4A+4B−D=−4,

4A=8.−4A=−8.

From the last equation: A=2A=2. We have:

B+C=0,DC=2,4BD=12.B+C=0, D-C=2, 4B-D=-12.

Then B=C,D=C+2,B=-C, D=C+2,

and we have the next equation: 4C2C=12,-4C-2-C=-12,

5C=10,C=2.-5C=-10, C=2.

Then B=C=2,D=C+2=2+2=4.B=-C=-2, D=C+2=2+2=4.

So we have:

2x34x8x4x3+4x24x=2x2x1+2x+4x2+4.\frac{2x^3 −4x−8}{x^4 −x^3 +4x^2 −4x}=\frac{2}{x}-\frac{2}{x-1}+\frac{2x+4}{x^2+4}.

Now we can evaluate the integral:

2x34x8x4x3+4x24xdx=(2x2x1+2x+4x2+4)dx=\int \frac{2x^3 −4x−8}{x^4 −x^3 +4x^2 −4x} dx=\int(\frac{2}{x}-\frac{2}{x-1}+\frac{2x+4}{x^2+4})dx=

=2xdx2x1dx+2x+4x2+4dx=2xdx2x1dx+2xx2+4dx+4x2+4dx==\int\frac{2}{x}dx-\int\frac{2}{x-1}dx+\int\frac{2x+4}{x^2+4}dx=\int\frac{2}{x}dx-\int\frac{2}{x-1}dx+\int\frac{2x}{x^2+4}dx+\int\frac{4}{x^2+4}dx=

=2xdx2x1dx+d(x2+4)x2+4+4x2+4dx==\int\frac{2}{x}dx-\int\frac{2}{x-1}dx+\int\frac{d(x^2+4)}{x^2+4}+\int\frac{4}{x^2+4}dx=

=2lnx2lnx1+lnx2+4+412arctanx2+C==2ln|x|-2ln|x-1|+ln|x^2+4|+4\cdot \frac{1}{2}arctan\frac{x}{2}+C=

=2lnx2lnx1+lnx2+4+2arctanx2+C.=2ln|x|-2ln|x-1|+ln|x^2+4|+2arctan\frac{x}{2}+C.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment