Question #124026
Differentiate f(x)=tan^-1(1-x/1+x)
Differentiate x^x
1
Expert's answer
2020-06-28T18:45:54-0400

i)


d(arctan1x1+x)dx=\frac{d(arctan\frac{1-x}{1+x})}{dx}= 1(1x1+x)2+1ddx1x1+x\frac{1}{(\frac{1-x}{1+x})^{2}+1}\frac{d}{dx}\frac{1-x}{1+x}


=1(1x1+x)2+1(1)(1+x)(1)(1x)(1+x)2\frac{1}{(\frac{1-x}{1+x})^{2}+1}\frac{(-1)(1+x)-(1)(1-x)}{(1+x)^{2}}

=1(1x1+x)2+12(1+x)2\frac{1}{(\frac{1-x}{1+x})^{2}+1}\frac{-2}{(1+x)^{2}}



simplifying we get


d(tan-1(1-x/1+x) = 11+x2\frac{-1}{1+x^{2}}



ii) d(xx)/dx = ddxeln(x)x\frac{d}{dx}e^{ln(x) x}

= exln(x) ddxxlnx\frac{d}{dx}xlnx


=exlnx(1lnx+x1x)e^{xlnx}(1*lnx+x*\frac{1}{x})

= exlnx(lnx+1)e^{xlnx}(lnx+1)


xx(lnx+1)x^{x}(ln x+1)





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS