i)
dxd(arctan1+x1−x)= (1+x1−x)2+11dxd1+x1−x
=(1+x1−x)2+11(1+x)2(−1)(1+x)−(1)(1−x)
=(1+x1−x)2+11(1+x)2−2
simplifying we get
d(tan-1(1-x/1+x) = 1+x2−1
ii) d(xx)/dx = dxdeln(x)x
= exln(x) dxdxlnx
=exlnx(1∗lnx+x∗x1)
= exlnx(lnx+1)
xx(lnx+1)
Comments