Question #123846
Find the length of the arc of the parabola y2 = x from (0, 0) to (1, 1)
1
Expert's answer
2020-06-30T17:25:20-0400

We have an explicitly defined function f(y)=y2f(y) = y^2.

So the length of this curve on the segment y[0,1]y \in [0, 1] will be calculated using the formula:


L=011+f(y)2dyL = \intop_0^1\sqrt{1 + {f'(y)}^2}dy , then f(y)=2yf'(y) = 2y     L=011+4y2dy\implies L = \intop_0^1\sqrt{1 + 4y^2}dy.



011+4y2dy=\intop_0^1\sqrt{1 + 4y^2}dy =


=[u=1+4y2du=4y1+4y2dv=dyd=y]=y1+4y201= \begin{bmatrix} u=\sqrt{1 + 4y^2} & du=\frac{4y}{\sqrt{1 + 4y^2} }\\ dv = dy & d = y \end{bmatrix} = y\sqrt{1+4y^2}\mid_0^1-


014y21+4y2dy- \int_0^1\frac{4y^2}{\sqrt{1+4y^2}}dy .


014y21+4y2dy=011+4y211+4y2dy=011+4y2dy\int_0^1\frac{4y^2}{\sqrt{1+4y^2}}dy = \int_0^1\frac{1+4y^2-1}{\sqrt{1+4y^2}}dy =\int_0^1\sqrt{1+4y^2}dy -


01dy1+4y2-\int_0^1\frac{dy}{\sqrt{1+4y^2}} .


So, L=y1+4y201L+01dy1+4y2L= y\sqrt{1+4y^2}\mid_0^1-L +\int_0^1\frac{dy}{\sqrt{1+4y^2}}.


2L=y1+4y201+01dy1+4y22L = y\sqrt{1+4y^2}\mid_0^1+\int_0^1\frac{dy}{\sqrt{1+4y^2}}.


L=52+12×1201d(2y)1+(2y)2L = \frac{\sqrt{5}}{2} + \frac{1}{2}\times\frac{1}{2}\int_0^1\frac{d(2y)}{\sqrt{1+(2y)^2}}.


L=52+14ln2y+1+4y201L = \frac{\sqrt{5}}{2} + \frac{1}{4}ln\mid2y + \sqrt{1+4y^2}\mid\vert_0^1 .


L=52+14ln2+514ln1L = \frac{\sqrt{5}}{2} + \frac{1}{4}ln\mid2+\sqrt{5}\mid - \frac{1}{4}ln\mid1\mid.


But ln1=0ln\mid1\mid = 0, then


L=52+14ln2+51.4789L = \frac{\sqrt{5}}{2} + \frac{1}{4}ln\mid2+\sqrt{5}\mid \approx1.4789.


Answer: 1.4789


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS