We have an explicitly defined function f(y)=y2.
So the length of this curve on the segment y∈[0,1] will be calculated using the formula:
L=∫011+f′(y)2dy , then f′(y)=2y ⟹L=∫011+4y2dy.
∫011+4y2dy=
=[u=1+4y2dv=dydu=1+4y24yd=y]=y1+4y2∣01−
−∫011+4y24y2dy .
∫011+4y24y2dy=∫011+4y21+4y2−1dy=∫011+4y2dy−
−∫011+4y2dy .
So, L=y1+4y2∣01−L+∫011+4y2dy.
2L=y1+4y2∣01+∫011+4y2dy.
L=25+21×21∫011+(2y)2d(2y).
L=25+41ln∣2y+1+4y2∣∣01 .
L=25+41ln∣2+5∣−41ln∣1∣.
But ln∣1∣=0, then
L=25+41ln∣2+5∣≈1.4789.
Answer: 1.4789
Comments