We have an explicitly defined function "f(y) = y^2".
So the length of this curve on the segment "y \\in [0, 1]" will be calculated using the formula:
"L = \\intop_0^1\\sqrt{1 + {f'(y)}^2}dy" , then "f'(y) = 2y" "\\implies L = \\intop_0^1\\sqrt{1 + 4y^2}dy".
"\\intop_0^1\\sqrt{1 + 4y^2}dy ="
"= \\begin{bmatrix}\n u=\\sqrt{1 + 4y^2} & du=\\frac{4y}{\\sqrt{1 + 4y^2} }\\\\\n dv = dy & d = y\n\\end{bmatrix}\n= y\\sqrt{1+4y^2}\\mid_0^1-"
"- \\int_0^1\\frac{4y^2}{\\sqrt{1+4y^2}}dy" .
"\\int_0^1\\frac{4y^2}{\\sqrt{1+4y^2}}dy = \\int_0^1\\frac{1+4y^2-1}{\\sqrt{1+4y^2}}dy =\\int_0^1\\sqrt{1+4y^2}dy -"
"-\\int_0^1\\frac{dy}{\\sqrt{1+4y^2}}" .
So, "L= y\\sqrt{1+4y^2}\\mid_0^1-L +\\int_0^1\\frac{dy}{\\sqrt{1+4y^2}}".
"2L = y\\sqrt{1+4y^2}\\mid_0^1+\\int_0^1\\frac{dy}{\\sqrt{1+4y^2}}".
"L = \\frac{\\sqrt{5}}{2} + \\frac{1}{2}\\times\\frac{1}{2}\\int_0^1\\frac{d(2y)}{\\sqrt{1+(2y)^2}}".
"L = \\frac{\\sqrt{5}}{2} + \\frac{1}{4}ln\\mid2y + \\sqrt{1+4y^2}\\mid\\vert_0^1" .
"L = \\frac{\\sqrt{5}}{2} + \\frac{1}{4}ln\\mid2+\\sqrt{5}\\mid - \\frac{1}{4}ln\\mid1\\mid".
But "ln\\mid1\\mid = 0", then
"L = \\frac{\\sqrt{5}}{2} + \\frac{1}{4}ln\\mid2+\\sqrt{5}\\mid \\approx1.4789".
Answer: 1.4789
Comments
Leave a comment