Answer to Question #123836 in Calculus for Pinku Kumar

Question #123836
find fx(0,0) and fx(x,y), where (x,y) not=(0,0) for the following functi on f(x,y)={xy^3/x^2+y^2, when (x,y)not =(0,0), 0 when (x,y)=(0,0)} is fx continuous at (0,0) justify
1
Expert's answer
2020-06-25T18:13:29-0400

  Given f(x,y)={xy3x2+y2, when (x,y)(0,0)0 when (x,y)=(0,0)f(x,y)= \begin{cases} \frac{xy^3}{x^2+y^2}, \ when \ (x,y)\neq (0,0) \\ 0 \ when \ (x,y)=(0,0) \end{cases}

So, fx(0,0)=limh0f(h,0)f(0,0)h=limh000h=0f_x(0,0) = lim_{h\to 0} \frac{f(h,0)-f(0,0)}{h} = lim_{h\to 0} \frac{0-0}{h} = 0 .

Now when (x,y)0(x,y)\neq 0 , fx(x,y)=(x2+y2)y3xy3(2x)(x2+y2)2=y5x2y3(x2+y2)2f_x(x,y) = \frac{(x^2+y^2)y^3 - xy^3(2x)}{(x^2+y^2)^2} = \frac{y^5 - x^2y^3}{(x^2+y^2)^2} = y3(y2x2)(x2+y2)2\frac{y^3(y^2-x^2)}{(x^2+y^2)^2} .

Now, fx(x,y)f_x(x,y) 0 as (x,y)(0,0)\to 0 \ as \ (x,y)\to (0,0) because numerator is more than enumerator.

So, fxf_x is continuous at (0,0) because lim(x,y)(0,0)fx(x,y)=fx(0,0)=0lim_{(x,y)\to (0,0)} f_x(x,y) = f_x(0,0) = 0 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment