Given f(x,y)={x2+y2xy3, when (x,y)=(0,0)0 when (x,y)=(0,0)
So, fx(0,0)=limh→0hf(h,0)−f(0,0)=limh→0h0−0=0 .
Now when (x,y)=0 , fx(x,y)=(x2+y2)2(x2+y2)y3−xy3(2x)=(x2+y2)2y5−x2y3 = (x2+y2)2y3(y2−x2) .
Now, fx(x,y) →0 as (x,y)→(0,0) because numerator is more than enumerator.
So, fx is continuous at (0,0) because lim(x,y)→(0,0)fx(x,y)=fx(0,0)=0 .
Comments
Leave a comment