Given "f(x,y)= \\begin{cases} \\frac{xy^3}{x^2+y^2}, \\ when \\ (x,y)\\neq (0,0) \\\\ 0 \\ when \\ (x,y)=(0,0) \\end{cases}"
So, "f_x(0,0) = lim_{h\\to 0} \\frac{f(h,0)-f(0,0)}{h} = lim_{h\\to 0} \\frac{0-0}{h} = 0" .
Now when "(x,y)\\neq 0" , "f_x(x,y) = \\frac{(x^2+y^2)y^3 - xy^3(2x)}{(x^2+y^2)^2} = \\frac{y^5 - x^2y^3}{(x^2+y^2)^2}" = "\\frac{y^3(y^2-x^2)}{(x^2+y^2)^2}" .
Now, "f_x(x,y)" "\\to 0 \\ as \\ (x,y)\\to (0,0)" because numerator is more than enumerator.
So, "f_x" is continuous at (0,0) because "lim_{(x,y)\\to (0,0)} f_x(x,y) = f_x(0,0) = 0" .
Comments
Leave a comment