The volume of solid obtained by rotation of the curve f ( x ) f(x) f ( x ) between x = a x=a x = a and x = b x=b x = b about the x-axis can be calculated as
V = π ∫ a b f 2 ( x ) d x V = \pi \int\limits_a^bf^2(x)\,dx V = π a ∫ b f 2 ( x ) d x . In our case
V = π ∫ 0 π / 12 cos 2 x d x = π ∫ 0 π / 12 1 + cos ( 2 x ) 2 d x = π ∫ 0 π / 12 1 2 d x + π ∫ 0 π / 12 cos ( 2 x ) 2 d x = π 2 24 + π ∫ 0 π / 6 cos τ 4 d τ = π 2 24 + π 4 sin τ ∣ 0 π / 6 = π 2 24 + π 8 . V = \pi \int\limits_0^{\pi/12}\cos^2 x\,dx = \pi \int\limits_{0}^{\pi/12}\dfrac{1+\cos(2x)}{2}\,dx = \pi \int\limits_{0}^{\pi/12}\dfrac12\,dx + \pi\int\limits_{0}^{\pi/12} \dfrac{\cos(2x)}{2}\,dx = \dfrac{\pi^2}{24} + \pi \int\limits_{0}^{\pi/6}\dfrac{\cos \tau}{4}\,d\tau = \dfrac{\pi^2}{24} + \dfrac{\pi}{4} \sin\tau\Big|_0^{\pi/6} = \dfrac{\pi^2}{24} +\dfrac{\pi}{8}. V = π 0 ∫ π /12 cos 2 x d x = π 0 ∫ π /12 2 1 + cos ( 2 x ) d x = π 0 ∫ π /12 2 1 d x + π 0 ∫ π /12 2 cos ( 2 x ) d x = 24 π 2 + π 0 ∫ π /6 4 cos τ d τ = 24 π 2 + 4 π sin τ ∣ ∣ 0 π /6 = 24 π 2 + 8 π .
Comments