Question #122831
Integrate the following function w.r.t. x using substitution : 1) x^3√x^4+1 dx . lim 0 to 1. 2) tan^7x sec^2x dx lim 0 to π/4 . 3) sec^2(cosx) sinx dx
1
Expert's answer
2020-06-17T19:33:57-0400
  1. 01x3x4+1dx=1401x4+1d(x4+1)=16(x4+1)3201=22160.3047\int_0^1x^3\sqrt{x^4+1}\,\,dx=\frac14\int_0^1\sqrt{x^4+1}\,\,d(x^4+1)=\frac{1}{6} (x^4+1)^{\frac32}\vert_{0}^{1}=\frac{2\sqrt{2}-1}{6}\approx 0.3047
  2. 0π4tan7xcos2xdx=0π4tan7xd(tanx)=18tan8x0π4=18=0.125\int_0^{\frac{\pi}{4}}\frac{tan^7\,x}{cos^2\,x}\,\,dx=\int_0^{\frac{\pi}{4}}{tan^7\,x}\,\,d(tan\,x)=\frac{1}{8} tan^8\,x\vert_{0}^{\frac{\pi}{4}}=\frac18=0.125
  3. sinxcos2(cosx)dx=1cos2(cosx)d(cosx)=tan(cosx)+C,CR.\int{\frac{sin\,x}{cos^2(cos\,x)}}\,\,dx=-\int{\frac{1}{cos^2(cos\,x)}}d(cos\,x)=-tan(cos\,x)+C,\,\, C\in{\mathbb{R}}.

We used changes of variables (known also as integration by substitution) in integrals in all tasks(see e.g., https://en.wikipedia.org/wiki/Integration_by_substitution). The value in the first task was rounded to 4 decimal places.


Answers: 1. 22160.3047\frac{2\sqrt{2}-1}{6}\approx 0.3047 (it is rounded to 4 decimal places);

2. 0.125;

3. =tan(cosx)+C,CR=-tan(cos\,x)+C,\,\, C\in{\mathbb{R}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS