- "\\int_0^1x^3\\sqrt{x^4+1}\\,\\,dx=\\frac14\\int_0^1\\sqrt{x^4+1}\\,\\,d(x^4+1)=\\frac{1}{6} (x^4+1)^{\\frac32}\\vert_{0}^{1}=\\frac{2\\sqrt{2}-1}{6}\\approx 0.3047"
- "\\int_0^{\\frac{\\pi}{4}}\\frac{tan^7\\,x}{cos^2\\,x}\\,\\,dx=\\int_0^{\\frac{\\pi}{4}}{tan^7\\,x}\\,\\,d(tan\\,x)=\\frac{1}{8} tan^8\\,x\\vert_{0}^{\\frac{\\pi}{4}}=\\frac18=0.125"
- "\\int{\\frac{sin\\,x}{cos^2(cos\\,x)}}\\,\\,dx=-\\int{\\frac{1}{cos^2(cos\\,x)}}d(cos\\,x)=-tan(cos\\,x)+C,\\,\\, C\\in{\\mathbb{R}}."
We used changes of variables (known also as integration by substitution) in integrals in all tasks(see e.g., https://en.wikipedia.org/wiki/Integration_by_substitution). The value in the first task was rounded to 4 decimal places.
Answers: 1. "\\frac{2\\sqrt{2}-1}{6}\\approx 0.3047" (it is rounded to 4 decimal places);
2. 0.125;
3. "=-tan(cos\\,x)+C,\\,\\, C\\in{\\mathbb{R}}".
Comments
Leave a comment