∫ 0 1 x 3 x 4 + 1 d x = 1 4 ∫ 0 1 x 4 + 1 d ( x 4 + 1 ) = 1 6 ( x 4 + 1 ) 3 2 ∣ 0 1 = 2 2 − 1 6 ≈ 0.3047 \int_0^1x^3\sqrt{x^4+1}\,\,dx=\frac14\int_0^1\sqrt{x^4+1}\,\,d(x^4+1)=\frac{1}{6} (x^4+1)^{\frac32}\vert_{0}^{1}=\frac{2\sqrt{2}-1}{6}\approx 0.3047 ∫ 0 1 x 3 x 4 + 1 d x = 4 1 ∫ 0 1 x 4 + 1 d ( x 4 + 1 ) = 6 1 ( x 4 + 1 ) 2 3 ∣ 0 1 = 6 2 2 − 1 ≈ 0.3047 ∫ 0 π 4 t a n 7 x c o s 2 x d x = ∫ 0 π 4 t a n 7 x d ( t a n x ) = 1 8 t a n 8 x ∣ 0 π 4 = 1 8 = 0.125 \int_0^{\frac{\pi}{4}}\frac{tan^7\,x}{cos^2\,x}\,\,dx=\int_0^{\frac{\pi}{4}}{tan^7\,x}\,\,d(tan\,x)=\frac{1}{8} tan^8\,x\vert_{0}^{\frac{\pi}{4}}=\frac18=0.125 ∫ 0 4 π co s 2 x t a n 7 x d x = ∫ 0 4 π t a n 7 x d ( t an x ) = 8 1 t a n 8 x ∣ 0 4 π = 8 1 = 0.125 ∫ s i n x c o s 2 ( c o s x ) d x = − ∫ 1 c o s 2 ( c o s x ) d ( c o s x ) = − t a n ( c o s x ) + C , C ∈ R . \int{\frac{sin\,x}{cos^2(cos\,x)}}\,\,dx=-\int{\frac{1}{cos^2(cos\,x)}}d(cos\,x)=-tan(cos\,x)+C,\,\, C\in{\mathbb{R}}. ∫ co s 2 ( cos x ) s in x d x = − ∫ co s 2 ( cos x ) 1 d ( cos x ) = − t an ( cos x ) + C , C ∈ R . We used changes of variables (known also as integration by substitution) in integrals in all tasks(see e.g., https://en.wikipedia.org/wiki/Integration_by_substitution ). The value in the first task was rounded to 4 decimal places.
Answers: 1. 2 2 − 1 6 ≈ 0.3047 \frac{2\sqrt{2}-1}{6}\approx 0.3047 6 2 2 − 1 ≈ 0.3047 (it is rounded to 4 decimal places);
2. 0.125;
3. = − t a n ( c o s x ) + C , C ∈ R =-tan(cos\,x)+C,\,\, C\in{\mathbb{R}} = − t an ( cos x ) + C , C ∈ R .
Comments