Question #122791
a) Express the following surfaces in spherical coordinates
i) xz=3
ii) x2 + y2 - z2=1
b) Find the cylindrical coordinates of the points where the Cartesian coordinates are
i). (6,6,8)
ii) (√2,1,1)
1
Expert's answer
2020-06-22T17:24:38-0400

a) Interrelation for Cartesian and spherical coordinates:

x=ρsinθcosϕy=ρsinθsinϕz=ρcosθx = \rho\sin\theta\cos\phi\\ y = \rho\sin\theta\sin\phi\\ z = \rho\cos\theta


i) xz = 3 =>

ρsinθcosϕρcosθ=3\rho\sin\theta\cos\phi*\rho\cos\theta=3 =>

ρ2sin(2θ)cosϕ=6\rho^2\sin(2\theta)\cos\phi = 6


ii) x2+y2z2=1x^2 + y^2 - z^2=1 =>

(ρsinθcosϕ)2+(ρsinθsinϕ)2(ρcosθ)2=1(\rho\sin\theta\cos\phi)^2 + (\rho\sin\theta\sin\phi)^2 - (\rho\cos\theta)^2 = 1 =>

ρ2(sin2θ(cos2ϕ+sin2ϕ)cos2θ)=1\rho^2(\sin^2\theta(\cos^2\phi + \sin^2\phi) - \cos^2\theta) = 1 =>

ρ2(sin2θcos2θ)=1\rho^2(\sin^2\theta - \cos^2\theta) = 1 =>

ρ2cos(2θ)=1\rho^2\cos(2\theta) = -1



b) a) Interrelation for cylindrical and Cartesian coordinates:

r=x2+y2θ=arctanyxz=zr = \sqrt{x^2+y^2}\\ \theta = \arctan{\cfrac{y}{x}}\\ z = z


i) (6,6,8)Cartesian(6,6,8)_{Cartesian} =>

(62+62,arctan66,8)cylindrical(\sqrt{6^2+6^2}, \arctan{\cfrac66, 8})_{cylindrical} =>

(62,45,8)(6\sqrt2, 45^\circ, 8)


ii) (2,1,1)Cartesian(\sqrt2, 1, 1)_{Cartesian} =>

((2)2+12,arctan12,1)cylindrical(\sqrt{(\sqrt2)^2+1^2}, \arctan{\cfrac1{\sqrt2}}, 1)_{cylindrical} =>

(3,35.264,1)(\sqrt3, 35.264^\circ, 1)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS