a) Interrelation for Cartesian and spherical coordinates:
"x = \\rho\\sin\\theta\\cos\\phi\\\\\ny = \\rho\\sin\\theta\\sin\\phi\\\\\nz = \\rho\\cos\\theta"
i) xz = 3 =>
"\\rho\\sin\\theta\\cos\\phi*\\rho\\cos\\theta=3" =>
"\\rho^2\\sin(2\\theta)\\cos\\phi = 6"
ii) "x^2 + y^2 - z^2=1" =>
"(\\rho\\sin\\theta\\cos\\phi)^2 + (\\rho\\sin\\theta\\sin\\phi)^2 - (\\rho\\cos\\theta)^2 = 1" =>
"\\rho^2(\\sin^2\\theta(\\cos^2\\phi + \\sin^2\\phi) - \\cos^2\\theta) = 1" =>
"\\rho^2(\\sin^2\\theta - \\cos^2\\theta) = 1" =>
"\\rho^2\\cos(2\\theta) = -1"
b) a) Interrelation for cylindrical and Cartesian coordinates:
"r = \\sqrt{x^2+y^2}\\\\\n\\theta = \\arctan{\\cfrac{y}{x}}\\\\\nz = z"
i) "(6,6,8)_{Cartesian}" =>
"(\\sqrt{6^2+6^2}, \\arctan{\\cfrac66, 8})_{cylindrical}" =>
"(6\\sqrt2, 45^\\circ, 8)"
ii) "(\\sqrt2, 1, 1)_{Cartesian}" =>
"(\\sqrt{(\\sqrt2)^2+1^2}, \\arctan{\\cfrac1{\\sqrt2}}, 1)_{cylindrical}" =>
"(\\sqrt3, 35.264^\\circ, 1)"
Comments
Leave a comment