Question #122461
The function f : x ı→ a + b cos x, is defined for 0 ≤ x ≤ 2π. Given that f(0) = 10 and that = 1 , find

(i) the values of a and b, (ii) the range of f, (iii) the exact value of
1
Expert's answer
2020-06-16T16:35:07-0400

f(x)=a+bcosxf(0)=a+bcos0=10maxa+b=10f(π)=a+bcosπ=1minab=1{a+b=10ab=1i)a=5.5b=4.5ii)cosx[1,1]4.5cosx[4.5,4.5]f(x)=5.5+4.5cosx[1,10]iii)f(x)=5.5+4.5cosxf(π2)=5.5+4.5cosπ2=5.5f(π3)=5.5+4.5cosπ3=7.75f(x)=a+b\cos x\\ f(0)=a+b\cos 0=10\to max\\ a+b=10\\ f(\pi)=a+b\cos \pi=1\to min\\ a-b=1\\ \left\{\begin{matrix} a +b=10 \\ a-b=1 \end{matrix}\right.\\ i)\\ a=5.5\\ b=4.5\\ ii)\\ \cos x\in[-1,1]\\ 4.5\cos x\in[-4.5,4.5]\\ f(x)=5.5+4.5\cos x\in[1,10]\\ iii)\\ f(x)=5.5+4.5\cos x\\ f(\frac{\pi}{2})=5.5+4.5\cdot\cos\frac{\pi}{2}=5.5\\ f(\frac{\pi}{3})=5.5+4.5\cdot\cos\frac{\pi}{3}=7.75


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS