"\\text{The curve has two branches. It can be considered as the union of two functions}: \\\\[1 em]\n y^2=x^2(x+1)\\rightarrow y=\\sqrt{x^3+x^2 }=x\\sqrt{x+1 } ~~\\text{and}~~ y=-x\\sqrt{x+1 } \\\\[1 em]\n\n\\text{The domain is the set of non-negative real numbers for both the functions}\\\\[1 em] \n\n \\therefore \\text{The domain } x+1 \\geq 0\\rightarrow x\\geq -1 \\\\[1 em] \n\\text{As x } \\rightarrow \\infty\\Rightarrow y=x\\sqrt{x+1 }\\rightarrow \\infty ,y=-x\\sqrt{x+1 } \\rightarrow -\\infty \\\\[1 em] \n\\therefore \\text{The range } =\\left ( -\\infty ,\\infty \\right )\\\\[1 em]\n\\text{Intersection with x axis is determined by a substitution }y=0\\rightarrow x=1 ,x=-1\\\\[1 em]\n\\therefore \\text{Intersection with x axis is} \\left ( 0,0 \\right ),\\left ( -1,0 \\right )\\\\[1 em]\n\\text{Intersection with y axis is determined by a substitution }x=0\\rightarrow y=0 \\\\[1 em]\n\\therefore \\text{Intersection with y axis } is\\left ( 0,0 \\right )\\\\[1 em]\n\\text{ Now the table can be made giving some values of the x }\\\\[1 em]\nx=-1\\rightarrow y=0~~~~~~~ ,~~~~~~x=3\\rightarrow y=\\pm6 \\\\[1 em]\nx=8\\rightarrow y=\\pm24~~~~~ ,~~~~~~\nx=15\\rightarrow y=\\pm60~~~~~ ,~~~~~~\nx=24\\rightarrow y=\\pm120\\\\[1 em]"
Comments
Leave a comment