We can integrate the function (5x−3)4(5x-3)^4(5x−3)4 by substitution. Set u=5x−3u=5x-3u=5x−3, then du=5dx,du=5dx,du=5dx, and dx=du5.dx=\frac{du}{5}.dx=5du.
Hence
∫(5x−3)4dx=∫u4du5=15∫u4du=15⋅u55+C=u525+C=\int (5x-3)^4dx=\int u^4\frac{du}{5}=\frac{1}{5}\int u^4du=\frac{1}{5}\cdot \frac{u^5}{5}+C=\frac{u^5}{25}+C=∫(5x−3)4dx=∫u45du=51∫u4du=51⋅5u5+C=25u5+C=
=(5x−3)525+C.=\frac{(5x-3)^5}{25}+C.=25(5x−3)5+C.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments