Given "f(x,y) = \\begin{cases} \\frac{xy^3}{x^2+y^2} : (x,y)\\neq (0,0) \\\\ 0 \\ \\ \\ \\ \\ \\ \\ : (x,y)=(0,0) \\end{cases}"
Now, "f_x(0,0) = \\lim_{h\\to 0} \\frac{f(h,0)-f(0,0)}{h} = \\lim_{h\\to 0} \\frac{0-0}{h} = 0"
And, "f_y(0,0) = \\lim_{k \\to 0} \\frac{f(0,k)-f(0,0)}{k} = \\lim_{h\\to 0} \\frac{0-0}{k} = 0" .
Comments
Leave a comment