Given f(x,y)={xy3x2+y2:(x,y)≠(0,0)0 :(x,y)=(0,0)f(x,y) = \begin{cases} \frac{xy^3}{x^2+y^2} : (x,y)\neq (0,0) \\ 0 \ \ \ \ \ \ \ : (x,y)=(0,0) \end{cases}f(x,y)={x2+y2xy3:(x,y)=(0,0)0 :(x,y)=(0,0)
Now, fx(0,0)=limh→0f(h,0)−f(0,0)h=limh→00−0h=0f_x(0,0) = \lim_{h\to 0} \frac{f(h,0)-f(0,0)}{h} = \lim_{h\to 0} \frac{0-0}{h} = 0fx(0,0)=limh→0hf(h,0)−f(0,0)=limh→0h0−0=0
And, fy(0,0)=limk→0f(0,k)−f(0,0)k=limh→00−0k=0f_y(0,0) = \lim_{k \to 0} \frac{f(0,k)-f(0,0)}{k} = \lim_{h\to 0} \frac{0-0}{k} = 0fy(0,0)=limk→0kf(0,k)−f(0,0)=limh→0k0−0=0 .
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments