y = x 2 , y = 4 x − x 2 , y = 6 ∴ x 2 = 4 x − x 2 → x 2 − 2 x = 0 → x = 0 , 2 ∴ V = π ∫ 0 2 r 1 2 − r 2 2 d x r 1 = 6 − x 2 , r 2 = 6 − 4 x + x 2 ∴ V = π ∫ 0 2 ( 6 − x 2 ) 2 − ( 6 − 4 x + x 2 ) 2 d x = π ∫ 0 2 36 − 12 x 2 + x 4 − ( x 4 − 8 x 3 + 28 x 2 − 48 x + 36 ) d x = π ∫ 0 2 36 − 12 x 2 + x 4 − x 4 + 8 x 3 − 28 x 2 + 48 x − 36 d x = π ∫ 0 2 8 x 3 − 40 x 2 + 48 x d x = π ( 2 x 4 − 40 3 x 3 + 24 x 2 ) ∣ 0 2 ∴ V ≈ 67 y=x^{2} \quad ,y=4 x-x^{2} \quad ,y=6 \\[1 em]
\therefore x^{2}=4 x-x^{2} \rightarrow x^{2}-2 x=0 \rightarrow x=0,2 \\[1 em]
\therefore V=\pi \int_{0}^{2} r_{1}^{2}-r_{2}^{2} d x \\[1 em]
r_{1}=6-x^{2} \quad, r_{2}=6-4 x+x^{2} \\[1 em]
\therefore V=\pi \int_{0}^{2}\left(6-x^{2}\right)^{2}-\left(6-4 x+x^{2}\right)^{2} dx\\[1 em]
=\pi \int_{0}^{2} 36-12 x^{2}+x^{4}-\left(x^{4}-8 x^{3}+28 x^{2}-48 x+36\right) d x \\[1 em]
=\pi \int_{0}^{2} 36-12 x^{2}+x^{4}-x^{4}+8 x^{3}-28 x^{2}+48 x-36 d x \\[1 em]
=\pi \int_{0}^{2} 8 x^{3}-40 x^{2}+48 x d x \\[1 em]
=\pi\left(2 x^{4}-\frac{40}{3} x^{3}+24 x^{2}\right) \bigg|_{0}^{2} \\[1 em]
\therefore V\approx 67 y = x 2 , y = 4 x − x 2 , y = 6 ∴ x 2 = 4 x − x 2 → x 2 − 2 x = 0 → x = 0 , 2 ∴ V = π ∫ 0 2 r 1 2 − r 2 2 d x r 1 = 6 − x 2 , r 2 = 6 − 4 x + x 2 ∴ V = π ∫ 0 2 ( 6 − x 2 ) 2 − ( 6 − 4 x + x 2 ) 2 d x = π ∫ 0 2 36 − 12 x 2 + x 4 − ( x 4 − 8 x 3 + 28 x 2 − 48 x + 36 ) d x = π ∫ 0 2 36 − 12 x 2 + x 4 − x 4 + 8 x 3 − 28 x 2 + 48 x − 36 d x = π ∫ 0 2 8 x 3 − 40 x 2 + 48 x d x = π ( 2 x 4 − 3 40 x 3 + 24 x 2 ) ∣ ∣ 0 2 ∴ V ≈ 67
Comments