"(1)\n\\int xsecx tanx dx"
Using integration by parts we get
"\\smallint udv=uv-\\smallint vdu"
u=x dv= secxtanxdx
du= dx v= secx
(2)
"I=\\int (3x+1)\\sqrt{(2x+3)^2-4}dx=\\frac{1}{2}\\int(\\frac{3(u-3)}{2}+1)\\sqrt{u^2-4}du\\,\n\nwhere \\,u=2x+3 \\,hence \\,I=\\frac{3}{4}\\int u\\sqrt{u^2-4} du-\\frac{7}{4}\\int\\sqrt{u^2-4} du\\,\\,\nif\\, u=\\frac{2}{ \\ cost},du=\\frac{2\\ sint}{ \\cos^2t}dt\\,\\,then \\,I=3\\int\\frac{ \\sin^3t}{ \\cos^4t} dt-\\frac{7}{2}\\int \\frac{ \\sin^2t}{\\cos^3t} dt\\,\nas H.B.Dwight \\,Tables\\, of \\,integrals , \\,N.Y.,\\,The \\,Mcmillan\\, corp,\\,1961,\\,f.(452.23),\\,f.(452.39) \\,hence\\,\\,\n\nI=\\frac{1-3\\cos^2t}{ \\cos^3t}-\\frac{7}{2}(\\frac{ \\ sint}{2\\ cos^2t}-\\frac{1}{2}\\ln\\tan(\\frac{\\pi}{4}+\\frac{t}{2}))\\,\\,where \\,t=\\arccos\\frac{2}{2x+3}"
(3)
"I=\\int(\\frac{1}{x+1}+\\frac{1}{x^2+4}) dx= \\int ln |x+1 |+\\frac{1}{2}\\arctan\\frac{x}{2}+C"
Comments
Leave a comment