( 1 ) ∫ x s e c x t a n x d x (1)
\int xsecx tanx dx ( 1 ) ∫ x sec x t an x d x
Using integration by parts we get
∫ u d v = u v − ∫ v d u \smallint udv=uv-\smallint vdu ∫ u d v = uv − ∫ v d u
u=x dv= secxtanxdx
du= dx v= secx
∫ x s e c x t a n x d x = x s e c x − ∫ s e c x d x ⟹ x s e c x − I n ∣ s e c x + t a n x ∣ + C \smallint xsecxtanxdx= xsecx-\smallint secxdx
\implies xsecx- In |secx+ tanx|+C ∫ x sec x t an x d x = x sec x − ∫ sec x d x ⟹ x sec x − I n ∣ sec x + t an x ∣ + C (2)
I = ∫ ( 3 x + 1 ) ( 2 x + 3 ) 2 − 4 d x = 1 2 ∫ ( 3 ( u − 3 ) 2 + 1 ) u 2 − 4 d u w h e r e u = 2 x + 3 h e n c e I = 3 4 ∫ u u 2 − 4 d u − 7 4 ∫ u 2 − 4 d u i f u = 2 c o s t , d u = 2 s i n t cos 2 t d t t h e n I = 3 ∫ sin 3 t cos 4 t d t − 7 2 ∫ sin 2 t cos 3 t d t a s H . B . D w i g h t T a b l e s o f i n t e g r a l s , N . Y . , T h e M c m i l l a n c o r p , 1961 , f . ( 452.23 ) , f . ( 452.39 ) h e n c e I = 1 − 3 cos 2 t cos 3 t − 7 2 ( s i n t 2 c o s 2 t − 1 2 ln tan ( π 4 + t 2 ) ) w h e r e t = arccos 2 2 x + 3 I=\int (3x+1)\sqrt{(2x+3)^2-4}dx=\frac{1}{2}\int(\frac{3(u-3)}{2}+1)\sqrt{u^2-4}du\,
where \,u=2x+3 \,hence \,I=\frac{3}{4}\int u\sqrt{u^2-4} du-\frac{7}{4}\int\sqrt{u^2-4} du\,\,
if\, u=\frac{2}{ \ cost},du=\frac{2\ sint}{ \cos^2t}dt\,\,then \,I=3\int\frac{ \sin^3t}{ \cos^4t} dt-\frac{7}{2}\int \frac{ \sin^2t}{\cos^3t} dt\,
as H.B.Dwight \,Tables\, of \,integrals , \,N.Y.,\,The \,Mcmillan\, corp,\,1961,\,f.(452.23),\,f.(452.39) \,hence\,\,
I=\frac{1-3\cos^2t}{ \cos^3t}-\frac{7}{2}(\frac{ \ sint}{2\ cos^2t}-\frac{1}{2}\ln\tan(\frac{\pi}{4}+\frac{t}{2}))\,\,where \,t=\arccos\frac{2}{2x+3} I = ∫ ( 3 x + 1 ) ( 2 x + 3 ) 2 − 4 d x = 2 1 ∫ ( 2 3 ( u − 3 ) + 1 ) u 2 − 4 d u w h ere u = 2 x + 3 h e n ce I = 4 3 ∫ u u 2 − 4 d u − 4 7 ∫ u 2 − 4 d u i f u = cos t 2 , d u = c o s 2 t 2 s in t d t t h e n I = 3 ∫ c o s 4 t s i n 3 t d t − 2 7 ∫ c o s 3 t s i n 2 t d t a sH . B . D w i g h t T ab l es o f in t e g r a l s , N . Y . , T h e M c mi ll an cor p , 1961 , f . ( 452.23 ) , f . ( 452.39 ) h e n ce I = c o s 3 t 1 − 3 c o s 2 t − 2 7 ( 2 co s 2 t s in t − 2 1 ln tan ( 4 π + 2 t )) w h ere t = arccos 2 x + 3 2
(3)
I = ∫ ( 1 x + 1 + 1 x 2 + 4 ) d x = ∫ l n ∣ x + 1 ∣ + 1 2 arctan x 2 + C I=\int(\frac{1}{x+1}+\frac{1}{x^2+4}) dx= \int ln |x+1 |+\frac{1}{2}\arctan\frac{x}{2}+C I = ∫ ( x + 1 1 + x 2 + 4 1 ) d x = ∫ l n ∣ x + 1∣ + 2 1 arctan 2 x + C
Comments