(1)∫xsecxtanxdx
Using integration by parts we get
∫udv=uv−∫vdu
u=x dv= secxtanxdx
du= dx v= secx
∫xsecxtanxdx=xsecx−∫secxdx⟹xsecx−In∣secx+tanx∣+C(2)
I=∫(3x+1)(2x+3)2−4dx=21∫(23(u−3)+1)u2−4duwhereu=2x+3henceI=43∫uu2−4du−47∫u2−4duifu= cost2,du=cos2t2 sintdtthenI=3∫cos4tsin3tdt−27∫cos3tsin2tdtasH.B.DwightTablesofintegrals,N.Y.,TheMcmillancorp,1961,f.(452.23),f.(452.39)henceI=cos3t1−3cos2t−27(2 cos2t sint−21lntan(4π+2t))wheret=arccos2x+32
(3)
I=∫(x+11+x2+41)dx=∫ln∣x+1∣+21arctan2x+C
Comments
Leave a comment