Given "y=e^{2x}sinx \\implies y' = e^{2x}cosx+2e^{2x}sinx"
"\\implies y''-4y'+5y = e^{2x}(4cosx+3sinx-4cosx-8sinx+5sinx)\n= e^{2x} (0) = 0"
Hence, "y =e^{2x} sinx" is solution of "y''-4y'+5y=0" .
2) Let "y = ln(1+sin^2x)"
So, by differentiation with respect to x, we get
"\\frac{dy}{dx} = \\frac{1}{1+sin^2x} (2sinxcosx)" .
3) Let "y = x^x" "\\implies log(y)= xlog(x)"
So, by differentiation with respect to x, we get
"\\frac{1}{y}\\frac{dy}{dx} = 1+log(x)\n\\implies \\frac{dy}{dx} = x^x(1+logx)" .
4) We partial fraction,
"\\frac{\\left(2x^3-4x-8\\right)}{\\left(x^4-x^3+4x^2-4x\\right)} = \\frac{2}{x}-\\frac{2}{x-1}+\\frac{2x+4}{x^2+4}" = "\\frac{2}{x}-\\frac{2}{x-1}+\\frac{2x}{x^2+4} + \\frac{4}{x^2+4}"
Hence, "\\intop\\frac{\\left(2x^3-4x-8\\right)}{\\left(x^4-x^3+4x^2-4x\\right)} dx= \\intop( \\frac{2}{x}-\\frac{2}{x-1}+\\frac{2x}{x^2+4} + \\frac{4}{x^2+4})dx"
= "2ln(x)-2ln(x-1)+ln(x^2+4)+ 2tan^{-1}(\\frac{x}{2}) +c="
"= ln(\\frac{x^2(x^2+4)}{(x-1)^2}) +2tan^{-1}(\\frac{x}{2})+c" .
Comments
Leave a comment