Given y=e2xsinx⟹y′=e2xcosx+2e2xsinx
⟹y′′−4y′+5y=e2x(4cosx+3sinx−4cosx−8sinx+5sinx)=e2x(0)=0
Hence, y=e2xsinx is solution of y′′−4y′+5y=0 .
2) Let y=ln(1+sin2x)
So, by differentiation with respect to x, we get
dxdy=1+sin2x1(2sinxcosx) .
3) Let y=xx ⟹log(y)=xlog(x)
So, by differentiation with respect to x, we get
y1dxdy=1+log(x)⟹dxdy=xx(1+logx) .
4) We partial fraction,
(x4−x3+4x2−4x)(2x3−4x−8)=x2−x−12+x2+42x+4 = x2−x−12+x2+42x+x2+44
Hence, ∫(x4−x3+4x2−4x)(2x3−4x−8)dx=∫(x2−x−12+x2+42x+x2+44)dx
= 2ln(x)−2ln(x−1)+ln(x2+4)+2tan−1(2x)+c=
=ln((x−1)2x2(x2+4))+2tan−1(2x)+c .
Comments