Question #124024
Verify that y=e^2xsinx is a solution to the differential equation (d^2/dx^2)-(4dy/dx)+5y=0


(2) Differentiate ln(1+sin^2x)

(3) differentiate x^x
(4).Evaluate the integral [ (2x^3-4x-8)/(x^4-x^3+4x^2-4x)]dx
1
Expert's answer
2020-06-29T19:24:22-0400

Given y=e2xsinx    y=e2xcosx+2e2xsinxy=e^{2x}sinx \implies y' = e^{2x}cosx+2e^{2x}sinx

    y4y+5y=e2x(4cosx+3sinx4cosx8sinx+5sinx)=e2x(0)=0\implies y''-4y'+5y = e^{2x}(4cosx+3sinx-4cosx-8sinx+5sinx) = e^{2x} (0) = 0

Hence, y=e2xsinxy =e^{2x} sinx is solution of y4y+5y=0y''-4y'+5y=0 .


2) Let y=ln(1+sin2x)y = ln(1+sin^2x)

So, by differentiation with respect to x, we get

dydx=11+sin2x(2sinxcosx)\frac{dy}{dx} = \frac{1}{1+sin^2x} (2sinxcosx) .


3) Let y=xxy = x^x     log(y)=xlog(x)\implies log(y)= xlog(x)

So, by differentiation with respect to x, we get

1ydydx=1+log(x)    dydx=xx(1+logx)\frac{1}{y}\frac{dy}{dx} = 1+log(x) \implies \frac{dy}{dx} = x^x(1+logx) .


4) We partial fraction,

(2x34x8)(x4x3+4x24x)=2x2x1+2x+4x2+4\frac{\left(2x^3-4x-8\right)}{\left(x^4-x^3+4x^2-4x\right)} = \frac{2}{x}-\frac{2}{x-1}+\frac{2x+4}{x^2+4} = 2x2x1+2xx2+4+4x2+4\frac{2}{x}-\frac{2}{x-1}+\frac{2x}{x^2+4} + \frac{4}{x^2+4}

Hence, (2x34x8)(x4x3+4x24x)dx=(2x2x1+2xx2+4+4x2+4)dx\intop\frac{\left(2x^3-4x-8\right)}{\left(x^4-x^3+4x^2-4x\right)} dx= \intop( \frac{2}{x}-\frac{2}{x-1}+\frac{2x}{x^2+4} + \frac{4}{x^2+4})dx

= 2ln(x)2ln(x1)+ln(x2+4)+2tan1(x2)+c=2ln(x)-2ln(x-1)+ln(x^2+4)+ 2tan^{-1}(\frac{x}{2}) +c=

=ln(x2(x2+4)(x1)2)+2tan1(x2)+c= ln(\frac{x^2(x^2+4)}{(x-1)^2}) +2tan^{-1}(\frac{x}{2})+c .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS