i. "ln[1+sin^2x]"
Differentiating with respect to "x:"
"d[ln[1+sin^2x]]\/dx"
"=(1\/(1+sin^2x))*[d(1+sin^2x)\/dx]"
"=" "(1\/(1+sin^2x))*[d[1+(1-cos2x)\/2]\/dx]"
"=(1\/(1+sin^2x))*[d(2+1-cos2x)\/2]\/dx]"
"=(1\/2(1+sin^2x))*[2sin2x]"
"=sin2x\/(1+sin^2x)" (Answer)
ii. "x^x"
Let A="x^x"
Taking "ln" on both sides:
"ln A=xlnx"
Differentiating w.r.t "x" :
"d[ln A]\/dx=d[xlnx]\/dx"
"=(1\/A)*d[A]\/dx=x*(1\/x)+lnx"
or,"dA\/dx=(1+lnx)*A"
"=(1+lnx)*x^x" (Answer)
Comments
Leave a comment