1) Given "y=\\frac{1}{C \u2013 t + t\u00b2}" ________(1)
"\\implies \\frac{dy}{dt} = (-1)(C-t+t^2)^{-2} (-1+2t) = \\frac{1-2t}{(C-t+t^2)^2} = (1-2t) y^2"
Hence, "y" given by (1) is solution of "\\frac{dy}{dx} = (1-2t)y^2" .
2) Given "y=\\frac{1}{C + cos t}" __________(2)
"\\implies \\frac{dy}{dt} = (-1)(C+cost)^{-2} (-sint) = y^2 sin(t)"
Hence, y given by (2) is solution of "\\frac{dy}{dt} = y^2sin(t)"
Comments
Leave a comment