Answer to Question #124051 in Calculus for Nii Laryea

Question #124051
Verify that y = e² ͯ sin x is a solution to the differential equation
d²y/dx² - 4 dy/dx + 5y = 0
1
Expert's answer
2020-06-29T17:52:37-0400

"\\text{since we have }\\\\\ny=e^{2x} \\ sin x\\\\\n\\text{we get}\\\\\ny^\\prime=2e^{2x} \\ sin \\ x+e^{2x} \\ cos \\ x\\\\\ny ^{\\prime\\prime}=4e^{2x} \\ sin \\ x+2 e^{2x} \\ cos \\ x\\\\\n+2 e^{2x} \\ cos \\ x-e^{2x} \\ sin \\ x\\rightarrow(1)\\\\\n\\text{Also, we have}\\\\\n\n-4y^\\prime=-8e^{2x} \\ sin \\ x-4e^{2x} \\ cos \\ x\\rightarrow (2)\\\\\n5 y=5e^{2x} \\ sin \\ x\\rightarrow (3)\\\\\n\\text{Adding (1), (2), (3), we get }\\\\\ny^{\\prime \\prime}-4y^\\prime+5y=0"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS