Question #124051
Verify that y = e² ͯ sin x is a solution to the differential equation
d²y/dx² - 4 dy/dx + 5y = 0
1
Expert's answer
2020-06-29T17:52:37-0400

since we have y=e2x sinxwe gety=2e2x sin x+e2x cos xy=4e2x sin x+2e2x cos x+2e2x cos xe2x sin x(1)Also, we have4y=8e2x sin x4e2x cos x(2)5y=5e2x sin x(3)Adding (1), (2), (3), we get y4y+5y=0\text{since we have }\\ y=e^{2x} \ sin x\\ \text{we get}\\ y^\prime=2e^{2x} \ sin \ x+e^{2x} \ cos \ x\\ y ^{\prime\prime}=4e^{2x} \ sin \ x+2 e^{2x} \ cos \ x\\ +2 e^{2x} \ cos \ x-e^{2x} \ sin \ x\rightarrow(1)\\ \text{Also, we have}\\ -4y^\prime=-8e^{2x} \ sin \ x-4e^{2x} \ cos \ x\rightarrow (2)\\ 5 y=5e^{2x} \ sin \ x\rightarrow (3)\\ \text{Adding (1), (2), (3), we get }\\ y^{\prime \prime}-4y^\prime+5y=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS