F(x,y,z)=⟨2xy,x2+z,y⟩
We know that F is the gradient of potential function U(x,y,z). So
∂x∂U=2xy⇒U(x,y,z)=x2y+f1(y,z),∂y∂U=x2+z⇒U(x,y,z)=x2y+yz+f2(x,z),∂z∂U=y⇒U(x,y,z)=yz+f3(x,y).
So U(x,y,x)=x2y+yz+const. Therefore, we should choose answer c. U(x,y,x)=x2y+yz−87.
Comments
Leave a comment