The limit is given by:
"\\lim_{x \\to a} \\frac{3x^2 + 3ax - 2a^2}{x^2 - a^2}"
"\\\\"
"\\\\" Left Hand Limit:
"\\lim_{x \\to a^{-} } \\frac{3x^2 + 3ax - 2a^2}{x^2 - a^2}"
From the function of limit and the limit value, we can say that the function decreases without a bound. So, we can write:
"\\lim_{x \\to a^{-} } \\frac{3x^2 + 3ax - 2a^2}{x^2 - a^2} = - \\infty"
"\\\\"
Right Hand Limit:
"\\lim_{x \\to a^{+} } \\frac{3x^2 + 3ax - 2a^2}{x^2 - a^2}"
From the function of limit and the limit value, we can say that the function grows without a bound. So, we can write:
"\\lim_{x \\to a^{+} } \\frac{3x^2 + 3ax - 2a^2}{x^2 - a^2} = \\infty"
"\\\\"
Since:
"\\lim_{x \\to a^{-} } \\frac{3x^2 + 3ax - 2a^2}{x^2 - a^2} \\neq \\lim_{x \\to a^{+} } \\frac{3x^2 + 3ax - 2a^2}{x^2 - a^2}"
Hence:
"\\lim_{x \\to a} \\frac{3x^2 + 3ax - 2a^2}{x^2 - a^2}" does not exist.
Comments
Leave a comment