Question #120851
what is the limit of 3x^2+3ax-2a^2 over x^2-a^2 as x approaches to a.
1
Expert's answer
2020-06-08T20:15:36-0400

The limit is given by:

limxa3x2+3ax2a2x2a2\lim_{x \to a} \frac{3x^2 + 3ax - 2a^2}{x^2 - a^2}

\\

\\ Left Hand Limit:

limxa3x2+3ax2a2x2a2\lim_{x \to a^{-} } \frac{3x^2 + 3ax - 2a^2}{x^2 - a^2}

From the function of limit and the limit value, we can say that the function decreases without a bound. So, we can write:

limxa3x2+3ax2a2x2a2=\lim_{x \to a^{-} } \frac{3x^2 + 3ax - 2a^2}{x^2 - a^2} = - \infty

\\

Right Hand Limit:

limxa+3x2+3ax2a2x2a2\lim_{x \to a^{+} } \frac{3x^2 + 3ax - 2a^2}{x^2 - a^2}

From the function of limit and the limit value, we can say that the function grows without a bound. So, we can write:

limxa+3x2+3ax2a2x2a2=\lim_{x \to a^{+} } \frac{3x^2 + 3ax - 2a^2}{x^2 - a^2} = \infty

\\

Since:

limxa3x2+3ax2a2x2a2limxa+3x2+3ax2a2x2a2\lim_{x \to a^{-} } \frac{3x^2 + 3ax - 2a^2}{x^2 - a^2} \neq \lim_{x \to a^{+} } \frac{3x^2 + 3ax - 2a^2}{x^2 - a^2}

Hence:

limxa3x2+3ax2a2x2a2\lim_{x \to a} \frac{3x^2 + 3ax - 2a^2}{x^2 - a^2} does not exist.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS