Equations of tangent line and normal line can be found using:
y−y0=y′(x0)(x−x0)− tangent line
y−y0=−y′(x0)1(x−x0)− normal line
So, all we need is to find y′(x0)
x0=1y0=3
y′(x)=(4x−x2)′=4−2x, then
y′(x0)=y′(1)=4−2∗1=2
Finally:
y−3=2(x−1)⟺y=2x+1 — tangent line
y−3=−21(x−1)⟺y=−21x+27 — normal line
Comments
Leave a comment