"\\begin{array}{l}\nA=\\int_{a}^{b}|F(x)| d x \n=\\int_{-7}^{11}|x-1| d x \\\\[1 em]\n\\text { It is clear from The drawing that } \n\\text { integration must be divided into } \n\\text { two parts } \\\\[1 em]\n\\begin{array}{l}\nA=\\int_{-7}^{1}(-x+1) d x+\\int_{1}^{11}(x-1) d x \\\\[1 em]\n=\\left.\\left(-\\frac{x^{2}}{2}+x\\right)\\right|_{-7} ^{1}+\\left.\\left(\\frac{x^{2}}{2}-x\\right)\\right|_{1} ^{11} \\\\[1 em]\n=\\left(-\\frac{1}{2}+1-\\left(-\\frac{49}{2}-7\\right)\\right)+\\left(\\frac{121}{2}-11-\\left(\\frac{1}{2}-1\\right)\\right) \\\\[1 em]\n=32+50 =82\\\\[1 em]\n\\text { You can find The area of two }\n\\text { tringles and add them } \\\\[1 em]\n\\begin{array}{l}\nA=\\frac{1}{2} \\times 10 \\times 10+\\frac{1}{2} \\times 8 \\times 8 \\\\[1 em]\n=50+32 \\\\[1 em]\n=82\n\\end{array}\n\\end{array}\n\\end{array}"
Comments
Leave a comment