Consider the region "D=\\{ (x,y,z): x^2+y^2+z^2\\leq r^2\\}"
The region "D" is inside the sphere of radius "r" , so the region in spherical coordinates is given by,
"D=\\{ (\\rho,\\phi,\\theta)|0\\leq\\rho\\leq r,0\\leq\\phi\\leq \\pi,0\\leq\\theta\\leq 2\\pi\\}"
Now, evaluate the triple integral in spherical coordinates as,
"\\iiint_DcdV=\\int_0^{2\\pi}\\int_0^{\\pi}\\int_0^{r}c\\rho^2\\sin\\phi d\\rho d\\phi d\\theta"
"=\\int_0^{2\\pi}\\int_0^{\\pi}c[\\frac{\\rho^3}{3}]_0^{r}\\sin\\phi d\\phi d\\theta"
"=\\frac{cr^3}{3}\\int_0^{2\\pi}\\int_0^{\\pi}\\sin\\phi d\\phi d\\theta"
"=\\frac{cr^3}{3}\\int_0^{2\\pi}[ -\\cos\\phi]_0^{\\pi}d\\theta"
"=\\frac{cr^3}{3}\\int_0^{2\\pi}(2)d\\theta"
"=\\frac{2cr^3}{3}\\int_0^{2\\pi}d\\theta"
"=\\frac{2cr^3}{3}[\\theta ]_0^{2\\pi}"
"=\\frac{2cr^3}{3}(2\\pi)"
"=\\frac{4\\pi cr^3}{3}"
Comments
Leave a comment