The unit tangent vector to the parametric curve r ( t ) r(t) r ( t ) is given by,
T → ( t ) = r ′ → ( t ) ∥ r ′ → ( t ) ∥ \overrightarrow{T}(t)=\frac{\overrightarrow{r'}(t)}{∥ \overrightarrow{r'}(t)∥} T ( t ) = ∥ r ′ ( t ) ∥ r ′ ( t )
Here,
r ′ → ( t ) = ⟨ 2 d d t ( sin ( 3 t ) ) , d d t ( 4 t ) , 2 d d t ( cos ( 3 t ) ) ⟩ \overrightarrow{r'}(t)=⟨ 2\frac{d}{dt}(\sin(3t)),\frac{d}{dt}(\sqrt{4}t),2\frac{d}{dt}(\cos(3t))⟩ r ′ ( t ) = ⟨ 2 d t d ( sin ( 3 t )) , d t d ( 4 t ) , 2 d t d ( cos ( 3 t ))⟩
= ⟨ 2 ( 3 cos ( 3 t ) ) , 4 , 2 ( − 3 sin ( 3 t ) ) ⟩ =⟨ 2(3\cos(3t)),\sqrt{4},2(-3\sin(3t))⟩ = ⟨ 2 ( 3 cos ( 3 t )) , 4 , 2 ( − 3 sin ( 3 t ))⟩
= ⟨ 6 cos ( 3 t ) , 2 , − 6 sin ( 3 t ) ⟩ =⟨ 6\cos(3t),2,-6\sin(3t)⟩ = ⟨ 6 cos ( 3 t ) , 2 , − 6 sin ( 3 t )⟩
∥ r ′ → ( t ) ∥ = ( 6 cos ( 3 t ) ) 2 + ( 4 ) 2 + ( − 6 sin ( 3 t ) ) 2 ∥\overrightarrow{r'}(t)∥=\sqrt{(6\cos(3t))^2+(\sqrt{4})^2+(-6\sin(3t))^2} ∥ r ′ ( t ) ∥ = ( 6 cos ( 3 t ) ) 2 + ( 4 ) 2 + ( − 6 sin ( 3 t ) ) 2
= 36 cos 2 ( 3 t ) + 4 + 36 sin 2 ( 3 t ) =\sqrt{36\cos^2(3t)+4+36\sin^2(3t)} = 36 cos 2 ( 3 t ) + 4 + 36 sin 2 ( 3 t )
= 36 ( cos 2 ( 3 t ) + sin 2 ( 3 t ) ) + 4 =\sqrt{36(\cos^2(3t)+\sin^2(3t))+4} = 36 ( cos 2 ( 3 t ) + sin 2 ( 3 t )) + 4
Use trigonometric identity cos 2 ( x ) + s i n 2 ( x ) = 1 \cos^2(x)+sin^2(x)=1 cos 2 ( x ) + s i n 2 ( x ) = 1 to simplify the term inside the radical as,
= 36 ( 1 ) + 4 =\sqrt{36(1)+4} = 36 ( 1 ) + 4
= 36 + 4 =\sqrt{36+4} = 36 + 4
= 40 =\sqrt{40} = 40
= 2 10 =2\sqrt{10} = 2 10
Therefore, the unit tangent vector is,
T → ( t ) = ⟨ 6 cos ( 3 t ) , 2 , − 6 sin ( 3 t ) ⟩ ∥ ⟨ 6 cos ( 3 t ) , 4 , − 6 sin ( 3 t ) ⟩ ∥ \overrightarrow{T}(t)=\frac{⟨ 6\cos(3t),2,-6\sin(3t)⟩}{∥ ⟨ 6\cos(3t),\sqrt{4},-6\sin(3t)⟩∥} T ( t ) = ∥ ⟨ 6 c o s ( 3 t ) , 4 , − 6 s i n ( 3 t )⟩ ∥ ⟨ 6 c o s ( 3 t ) , 2 , − 6 s i n ( 3 t )⟩
= ⟨ 6 cos ( 3 t ) , 2 , − 6 sin ( 3 t ) ⟩ 2 10 =\frac{⟨ 6\cos(3t),2,-6\sin(3t)⟩}{2\sqrt{10}} = 2 10 ⟨ 6 c o s ( 3 t ) , 2 , − 6 s i n ( 3 t )⟩
= ⟨ 3 cos ( 3 t ) 10 , 1 10 , − 3 sin ( 3 t ) 10 ⟩ =⟨ \frac{3\cos(3t)}{\sqrt{10}},\frac{1}{\sqrt{10}},-\frac{3\sin(3t)}{\sqrt{10}}⟩ = ⟨ 10 3 c o s ( 3 t ) , 10 1 , − 10 3 s i n ( 3 t ) ⟩
Therefore, the unit tangent vector to the parametric curve is T → ( t ) = ⟨ 3 cos ( 3 t ) 10 , 1 10 , − 3 sin ( 3 t ) 10 ⟩ \overrightarrow{T}(t)=⟨ \frac{3\cos(3t)}{\sqrt{10}},\frac{1}{\sqrt{10}},-\frac{3\sin(3t)}{\sqrt{10}}⟩ T ( t ) = ⟨ 10 3 c o s ( 3 t ) , 10 1 , − 10 3 s i n ( 3 t ) ⟩ .
Comments