Question #117467
Consider the parametric curve described by r(t) =〈2 sin(3t), √4t, 2cos(3t)〉. Find the unit tangent vector of r(t).
1
Expert's answer
2020-05-27T16:46:07-0400

The unit tangent vector to the parametric curve r(t)r(t) is given by,


T(t)=r(t)r(t)\overrightarrow{T}(t)=\frac{\overrightarrow{r'}(t)}{∥ \overrightarrow{r'}(t)∥}


Here,


r(t)=2ddt(sin(3t)),ddt(4t),2ddt(cos(3t))\overrightarrow{r'}(t)=⟨ 2\frac{d}{dt}(\sin(3t)),\frac{d}{dt}(\sqrt{4}t),2\frac{d}{dt}(\cos(3t))⟩


=2(3cos(3t)),4,2(3sin(3t))=⟨ 2(3\cos(3t)),\sqrt{4},2(-3\sin(3t))⟩


=6cos(3t),2,6sin(3t)=⟨ 6\cos(3t),2,-6\sin(3t)⟩


r(t)=(6cos(3t))2+(4)2+(6sin(3t))2∥\overrightarrow{r'}(t)∥=\sqrt{(6\cos(3t))^2+(\sqrt{4})^2+(-6\sin(3t))^2}


=36cos2(3t)+4+36sin2(3t)=\sqrt{36\cos^2(3t)+4+36\sin^2(3t)}


=36(cos2(3t)+sin2(3t))+4=\sqrt{36(\cos^2(3t)+\sin^2(3t))+4}


Use trigonometric identity cos2(x)+sin2(x)=1\cos^2(x)+sin^2(x)=1 to simplify the term inside the radical as,


=36(1)+4=\sqrt{36(1)+4}


=36+4=\sqrt{36+4}


=40=\sqrt{40}


=210=2\sqrt{10}


Therefore, the unit tangent vector is,


T(t)=6cos(3t),2,6sin(3t)6cos(3t),4,6sin(3t)\overrightarrow{T}(t)=\frac{⟨ 6\cos(3t),2,-6\sin(3t)⟩}{∥ ⟨ 6\cos(3t),\sqrt{4},-6\sin(3t)⟩∥}


=6cos(3t),2,6sin(3t)210=\frac{⟨ 6\cos(3t),2,-6\sin(3t)⟩}{2\sqrt{10}}


=3cos(3t)10,110,3sin(3t)10=⟨ \frac{3\cos(3t)}{\sqrt{10}},\frac{1}{\sqrt{10}},-\frac{3\sin(3t)}{\sqrt{10}}⟩


Therefore, the unit tangent vector to the parametric curve is T(t)=3cos(3t)10,110,3sin(3t)10\overrightarrow{T}(t)=⟨ \frac{3\cos(3t)}{\sqrt{10}},\frac{1}{\sqrt{10}},-\frac{3\sin(3t)}{\sqrt{10}}⟩.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS