The unit tangent vector to the parametric curve "r(t)" is given by,
"\\overrightarrow{T}(t)=\\frac{\\overrightarrow{r'}(t)}{\u2225 \\overrightarrow{r'}(t)\u2225}"
Here,
"\\overrightarrow{r'}(t)=\u27e8 2\\frac{d}{dt}(\\sin(3t)),\\frac{d}{dt}(\\sqrt{4}t),2\\frac{d}{dt}(\\cos(3t))\u27e9"
"=\u27e8 2(3\\cos(3t)),\\sqrt{4},2(-3\\sin(3t))\u27e9"
"=\u27e8 6\\cos(3t),2,-6\\sin(3t)\u27e9"
"\u2225\\overrightarrow{r'}(t)\u2225=\\sqrt{(6\\cos(3t))^2+(\\sqrt{4})^2+(-6\\sin(3t))^2}"
"=\\sqrt{36\\cos^2(3t)+4+36\\sin^2(3t)}"
"=\\sqrt{36(\\cos^2(3t)+\\sin^2(3t))+4}"
Use trigonometric identity "\\cos^2(x)+sin^2(x)=1" to simplify the term inside the radical as,
"=\\sqrt{36(1)+4}"
"=\\sqrt{36+4}"
"=\\sqrt{40}"
"=2\\sqrt{10}"
Therefore, the unit tangent vector is,
"\\overrightarrow{T}(t)=\\frac{\u27e8 6\\cos(3t),2,-6\\sin(3t)\u27e9}{\u2225 \u27e8 6\\cos(3t),\\sqrt{4},-6\\sin(3t)\u27e9\u2225}"
"=\\frac{\u27e8 6\\cos(3t),2,-6\\sin(3t)\u27e9}{2\\sqrt{10}}"
"=\u27e8 \\frac{3\\cos(3t)}{\\sqrt{10}},\\frac{1}{\\sqrt{10}},-\\frac{3\\sin(3t)}{\\sqrt{10}}\u27e9"
Therefore, the unit tangent vector to the parametric curve is "\\overrightarrow{T}(t)=\u27e8 \\frac{3\\cos(3t)}{\\sqrt{10}},\\frac{1}{\\sqrt{10}},-\\frac{3\\sin(3t)}{\\sqrt{10}}\u27e9".
Comments
Leave a comment