The unit tangent vector to the parametric curve r(t) is given by,
T(t)=∥r′(t)∥r′(t)
Here,
r′(t)=⟨2dtd(sin(3t)),dtd(4t),2dtd(cos(3t))⟩
=⟨2(3cos(3t)),4,2(−3sin(3t))⟩
=⟨6cos(3t),2,−6sin(3t)⟩
∥r′(t)∥=(6cos(3t))2+(4)2+(−6sin(3t))2
=36cos2(3t)+4+36sin2(3t)
=36(cos2(3t)+sin2(3t))+4
Use trigonometric identity cos2(x)+sin2(x)=1 to simplify the term inside the radical as,
=36(1)+4
=36+4
=40
=210
Therefore, the unit tangent vector is,
T(t)=∥⟨6cos(3t),4,−6sin(3t)⟩∥⟨6cos(3t),2,−6sin(3t)⟩
=210⟨6cos(3t),2,−6sin(3t)⟩
=⟨103cos(3t),101,−103sin(3t)⟩
Therefore, the unit tangent vector to the parametric curve is T(t)=⟨103cos(3t),101,−103sin(3t)⟩.
Comments